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Abstract

We present a sweep-based approach to modeling and deformation of three-dimensional

objects. We approximate the deformable parts of an object using sweep surfaces. The

vertices on the object boundary are bound to the sweep surfaces and then follow their

deformation. For practical applications, we apply this approach to 3D human body

modeling and deformation, and then extend it to the freeform deformation and to the

elastic deformation of three-dimensional objects.

For human modeling and deformation, a simple skeleton structure is extracted

from user-specified feature points; after that, control sweep surfaces that approximate

human arms, legs and torso are automatically generated. The vertices on the model

are bound to nearby sweep surfaces and follow the deformation of the sweep surfaces

as the model bends and twists its arms, legs, spine and neck. Anatomical features

including bone-protrusion, muscle-bulge, and skin-folding are also supported.

We then extend the sweep-based approach to the freeform deformation of three-

dimensional objects. The user selects deformable parts of an object and the cor-

responding control sweep surfaces are generated by interpolating key cross-sections.

The user can deform the shape of an object by controlling the underlying sweep sur-

faces. Several sweep surfaces of deformable parts can be organized into a hierarchy so

that they interact with each other in a controlled manner. The sweep-based freeform

deformation technique also provides various important advantages, including volume
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preservation and shape transfer.

We further extend the sweep-based approach to the elastic deformation of three-

dimensional objects by employing an elastic sweep surface. An elastic sweep surface

is constructed by interpolating key cross-sections whose positions, orientations and

boundary shapes are determined by physical simulations of simple mass-spring sys-

tems. As the user controls the underlying sweep surfaces or applies an external force,

the corresponding parts of an object elastically change their shapes. An external force

is decomposed into a rotational force and a radial one so that different deformation

effects are achieved by applying each of them selectively.

We also apply our sweep-based approach to geometric models represented as point

clouds. For this purpose, we approximate a point cloud using a surface displaced from

a manifold. A control mesh is generated from a point cloud and a local patch for each

vertex of the control mesh is constructed. The original points are then projected on to

nearby local patches and their displacements are adjusted so that the final displaced

surface approximates the point cloud with high precision. Sweep-based approach

is then applied to the control mesh. As the control mesh deforms, the displaced

surface is reconstructed and the corresponding smooth shape deformations follow. In

experimental results, we demonstrate the effectiveness of the sweep-based approach

and show that our approach provides an excellent control mechanism for deforming

three-dimensional objects.

keywords: Sweep Surface, Human Body Deformation, Freeform Deformation,

Elastic Deformation, Manifold, Displaced Surface.

Student Number: 2001-21510
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Chapter 1

Introduction

Sweeps are a procedural modeling technique for representing three-dimensional tubu-

lar objects [25]. When a 2D area or a 3D volume moves along a prescribed trajectory

in the space, the swept volume of this moving object is generated and a sweep surface

is then defined as its boundary. Such a procedural description of an object is efficient

in the sense that it requires only the specification of the trajectory and that of the

moving object. The surfaces of extrusion and revolution which are found in a surface

of solid modeling systems can be considered as simple sweep surfaces. Extrusion is

a translational sweep surface whose trajectory is a straight line and revolution is a

rotational sweep surface along a circular trajectory.

Jüttler and Wagner [43] developed a motion interpolation technique and applied

this technique to the design of sweeps with rational B-spline motions. They decom-

posed a motion into translational and rotational components, and combined them

to form a matrix-valued rational spline curve. Under a rational motion, a 2D cross-

section generats a rational sweep surface represented in a NURBS form. Figure 1.1

1
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(a) (b)

Figure 1.1: Sweep surfaces generated by a rational motion: (a) female body shape,
(b) fish shape composed of sweep surfaces [11]

shows various 3D shapes generated using this technique combined with a conventional

trimming method.

In this thesis, we employ sweeps as a shape control tool and present a sweep-

based approach to shape modeling and deformation of three-dimensional objects. Our

sweep-based approach is distinguished from previous approaches [1, 18, 50, 56, 57, 64,

75] in the sense that it provides an intuitive control mechanism and supports various

geometric constraints during a deformation. Moreover, our approach is independent

of geometric representations and can easily be extended to a physical setting. A

specialized technique is proposed for 3D human model and then extended to the

freeform deformation and to the elastic deformation of arbitrary objects.

Virtual human models play an important role in computer animation, including

real-time applications in virtual reality and computer games. Advanced anatomy-

based simulation techniques produce very realistic modeling and deformation of vir-
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tual humans [5, 62, 78]. However, they do not support real-time applications, for

which vertex blending is now widely accepted as the method of choice [1, 50, 57, 75].

We propose a sweep-based approach as an alternative that combines the advantages

of these existing techniques. Important anatomical features are supported, while

computational cost remains about the same as vertex blending.

This work was motivated by the recent results of Allen et al. [2, 3] in which 3D

human models are reconstructed from range scan data and then animated, param-

eterized and processed further for various applications. We have also adapted the

extended linear blending scheme of Mohr and Gleicher [57] to become a sweep-based

shape blending scheme. In [2, 57], the deformation of the human models is based

on example data acquired from many different poses; our approach requires only a

single pose. Additional poses can then be generated automatically. The user can also

modify the shape of the model in a particular pose or during motion by editing and

interpolating the underlying sweep surfaces.

Our sweep-based approach is similar to the human limb modeling and deformation

technique proposed by Hyun et al. [39] and Kalra et al. [44]. The main difference is

that we represent a whole body using sweep surfaces with star-shaped cross-sections.

The body shape is then precisely reconstructed from these sweep surfaces using dis-

placement maps. One technical challenge is how to combine displacement surfaces

around the shoulder and the hip, where different surfaces meet. We address this is-

sue by applying a smooth shape blending scheme to the displacements from different

surfaces. Figure 1.2 shows a deformation result of a female model using our technique.

We also support certain features of the anatomy-based approach, such as elbow-
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Figure 1.2: ‘Victoria’ in a ballet motion.

protrusion, muscle-bulge and skin-folding as an arm bends. These effects are realized

using a GPU-based collision-detection procedure [28].

We then extend this technique to the freeform deformation of three-dimensional

objects. Since its introduction by Sederberg and Parry [64], the freeform deforma-

tion (FFD) has established itself as one of the most powerful shape design methods

for freeform objects. A user of FFD starts with an existing object and changes its

shape. This contrasts with the use of sweeps, which allow a designer to create three-

dimensional objects from scratch instead of modifying existing shapes. In this thesis,

we combine these two well-known shape design tools, and propose a new technique

for the sweep-based freeform deformation of existing three-dimensional objects.

In conventional FFD [18, 56, 64], the user deforms the shape of an object using

control lattices which define trivariate volumes enclosing the parts of an object to be
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(a) (b) (c)

Figure 1.3: Interactions among deformations: (a) teapot model and control sweep
surfaces, (b) deformation of the body, and (c) deformation of the spout and handle.

deformed. These methods require a hierarchy of multiple lattices when applied to

complex geometric objects with multiple control handles. The hierarchy of multiple

control lattices is rather difficult to specify because of its three-dimensional structure.

This difficulty motivates us to consider variants of FFD which are based on a one-

parameter family of affine transformations [7, 12] or on a coordinate frame that moves

along the axis of an object [51].

Figure 1.3 explains the basic idea of our approach. It shows the Utah teapot rep-

resented as a union of three deformable parts: the body, the spout and the handle.

Each part is approximated by a sweep surface. The boundary vertices of each de-

formable part are then bound to appropriate cross-sections of the sweep surfaces. By

deforming these surfaces, the corresponding parts of the teapot change their shapes.

An interesting feature of the Utah teapot is its multiple control handles, and the

deformation of one handle influences the others to maintain the consistency of the

teapot’s topology. There certainly need to be constraints on the allowable interac-

tions between the three different parts of the Utah teapot. Figure 1.3(b) shows a

deformation of the teapot body and the hierarchy of different sweep surfaces, which
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automatically changes the shape of the handle and the spout so as to maintain the

topology of the teapot model as the body changes its shape. Figure 1.3(c) shows the

result of a deformation of the handle, and the hierarchy of sweep surfaces which makes

the body and spout change their shapes as the user bends the handle. In this thesis,

we will address these interaction problems and show how to set up the necessarily

complicated interaction rules between different deformations.

Using existing FFD methods, it is difficult, or at best tedious, to support inter-

actions among multiple deformations. Even commercial modeling packages may only

support a few limited symmetric interactions. Some FFD methods [7, 51] provide

insufficient degrees of freedom for specifing arbitrary interactions among multiple

deformations. Our new FFD approach uses sweeps to support interactions among

different deformable parts in a natural way.

Our technique works by approximating the deformable parts of an object using

control sweep surfaces which are constructed by interpolating some key cross-sections.

An object is represented using multiple deformable sweep surfaces which can interact

because they are organized in a hierarchy. An effective way of binding a sweep

surface to other sweep surfaces within such a hierarchy is to bind key cross-sections

to cross-sections of the parent part. Using this simple binding mechanism, we can

construct a hierarchy between a number of control sweep surfaces and then deform

them simultaneously.

We further extend the sweep-based approach to the elastic deformation of three-

dimensional objects. We enhance a sweep surface to an elastic sweep surface. After

binding the vertices of deformable parts to the elastic sweep surfaces, the user changes
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the shapes of the underlying control sweep surfaces or applies external forces. By

physical simulations of the sweep surfaces, the deformable part changes their shapes

dynamically and elastic deformations are obtained.

An elastic sweep surface is constructed by interpolating key cross-sections that

change their positions, orientations and boundary shapes elastically. For this pur-

pose, we employ three different types of mass-spring systems, each of which simulates

the elastic changes of the position, orientation and radii of a key cross-section re-

spectively. Note that each of these changes are limited to key cross-sections and

we consider only one-dimensional spaces such as angles and distances. To generate

elastic deformation effects over the whole object, we combine the changes at key

cross-sections by interpolating them simultaneously, which produces a plausible de-

formations of the elastic sweep surface. In effect, we decompose the deformation in

three-dimensional space into simple one-dimensional components and reconstruct the

overall deformation from the component deformations, which is the basic approach

taken in this thesis.

An elastic potential energy or external force initiates the elastic deformation of a

sweep surface. The elastic potential energy is generated by editing key cross-sections

or directly controlling a sweep surface. The external force is applied to a sweep surface

by a user interaction or as a result of collision with other objects. It is decomposed

into a rotational force and a radial one for a proper key cross-section and different

deformation effects are achieved by applying each of them selectively. Figure 1.4

shows the results of sequential deformations of an elastic sweep surface in which an

external force is generated by the collision of a sphere (in red) with the sweep surface.
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Figure 1.4: Deformation results of applying external forces.

Finally, we apply our sweep-based approach to a detailed geometric model repre-

sented as a point cloud. Thanks to recent advances in scanning technologies, it has

become easy to obtain accurate and detailed geometric data from real-world objects.

However, contemporary scanning systems produce a discrete representation, in the

form of unorganized point clouds or polygonal meshes. Such models can have se-

rious problems, including irregularities, discontinuities, huge size and missing areas,

making it difficult to use this sort of data for practical applications.

Many mesh processing techniques have been developed to resolve these problems.

Representative methods include simplification, smoothing, re-meshing and mesh op-

timization [22, 33, 34]. However, most of these techniques operate entirely in the

domain of discrete geometry, and do not offer analytic representations which are

useful in geometric modeling and processing.

Cook [17] introduced the displaced surface as an ingenious way of creating a
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detailed geometric model by applying a displacement map to a smooth surface. Kr-

ishnamurthy and Levoy [49] used tensor product B-spline patches to represent the

underlying domain surface and created fine details with displacement vectors; but

this leads to a discontinuity problem across patch and displacement map boundaries.

Recently, Lee et al. [52] have proposed a framework to unify subdivision surfaces and

scalar displacements. Thanks to the properties of subdivision surfaces, there are no

discontinuity problems in this approach. However, subdivision surfaces do not offer

analytic representations in general.

(a) (b) (c) (d)

Figure 1.5: Displaced surface: (a) control mesh, (b) C2-continuous domain surface,
(c) and (d) displaced surfaces at different resolutions.

In this thesis, we introduce a new representation scheme for displaced surfaces,

based on the manifold technique proposed by Ying and Zorin [79]. We first construct

a simple C2-continuous smooth surface which interpolates the vertices of a given

control mesh. Then, we define a scalar displacement function on each chart of an

atlas of this domain. A detailed surface can now be constructed by applying scalar

displacement functions to the local patches and blending them using the manifold

structure of a control mesh. Figure 1.5 shows the displaced surfaces generated by our
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technique.

In order to be able to address practical applications with our technique, we also

propose an algorithm to approximate a detailed geometric model given as a point

cloud. This approximation is based on the analytic properties of our representation

scheme and the optimization of scalar displacement functions on the local charts of the

domain atlas. Once the point cloud has been approximated using a displaced surface,

sweep-based approach is then applied to a control mesh of the displaced surface. As

the control mesh deforms, the displaced surface is reconstructed and smooth shape

deformations are achieved.

The main contributions of this thesis are summarized as follows:

• Sweep-based human deformation technique provides highly effective control

handles for animating and designing human motion. Our approach demon-

strates real-time performance for deforming human models of reasonable com-

plexity.

• Sweep-based human deformation technique also supports some anatomical fea-

tures such as elbow and knee protrusions as well as non-penetrating skin folding

using a GPU-based collision detection procedure.

• Sweep-based freeform deformation technique provides an intuitive and effec-

tive control mechanism for modifying and editing three-dimensional shapes and

various direct control techniques are proposed to enhance the efficiency of our

approach.

• Volume-preserving interactions among different deformable parts of an object
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are fully supported in a hierarchical manner.

• Our elastic sweep surface is constructed by interpolating the elastic changes of

the positions, orientations and radii of a few key cross-sections. This approach

greatly simplifies the elastic deformation of the whole sweep surface and provides

a real-time performance.

• Compound elastic deformation effects can easily be achieved by integrating

simple component deformations from key cross-sections. Moreover, an external

force can be decomposed into a rotational force and a radial one for a proper key

cross-section and various different types of deformation effects can be achieved

by applying a few of them selectively.

• Our sweep-based elastic deformation technique provides an effective control

mechanism for the elastic deformation of three-dimensional objects by specifying

constraints of the underlying control sweep surfaces. For example, the user can

specify which parts an object would undergo elastic bending or twisting.

• We propose a new displaced surface representation using a manifold structure

and displacement functions. Using this representation, a point cloud is approx-

imated with high precision.

• We apply our sweep-based approach to the control mesh of our displaced surface.

As the control mesh deforms, the displaced surface is reconstructed and smooth

shape deformations are generated.

The rest of this thesis is organized as follows. In Chapter 2, we briefly review some

mathematical preliminaries related to non-uniform rational B-spline curves/surfaces
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and rational B-spline motions. A sweep-based approach to human body modeling

and deformation is presented in Chapter 3. In Chapter 4, we extend this sweep-

based approach to the freeform deformation of three-dimensional objects. In Chapter

5, we further extend the sweep-based approach to the elastic deformation of three-

dimensional objects. In Chapter 6, we approximate detailed geometric models rep-

resented as point clouds using a displaced surface from a manifold, and apply our

sweep-based approach to the control mesh of the displaced surface. Finally, we con-

clude this thesis and suggest future works in Chapter 7.



Chapter 2

Preliminaries

This chapter summarizes some fundamentals of rational curves and surfaces (see

[23, 59]), rational motions (see [8, 43, 74]).

2.1 Spatial Kinematics

In order to study motions, we consider two copies of the Euclidean 3-space. The

first one is called the fixed space E3, with the points p. The second copy is called the

moving space Ê3, with the points p̂. Both spaces are associated with right-handed

Cartesian coordinate frames. The moving space Ê3 can be identified with a moving

Cartesian coordinate frame F̂ which is moved along a certain curve of the fixed space

E3. The position p ∈ E3 of a point p̂ of the moving space Ê3 results from a linear

transformation

p̂ 7→ p = Rp̂ + v, (2.1)

13
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where R is a 3× 3 rotation matrix and v = (v1, v2, v3) is the translation vector. This

transformation can be represented using a 4×4 homogeneous coordinate transforma-

tion matrix M : 


p

1


 =




R v

0 0 0 1




︸ ︷︷ ︸
M




p̂

1


 .

This transformation preserves the distances measured between points in F̂ and is

therefore a rigid transformation which we term a spatial displacement.

2.1.1 Motion

The motion of a rigid body is represented as a continuous one parameter family of

spatial displacements M(t) where the parameter t is assumed to be the time. Given

a point p̂, the matrix curve M(t) generates a continuous set of points p(t) = M(t)p̂

called the trajectory of the point p̂. The direction of the tangent to the trajectory

p(t) at t = t0 is the derivative

ṗ(t0) = Ṁ(t0)p̂ = Ṁ(t0)M
−1(t0)p(t0) (2.2)

From this equation we observe that the matrix ṀM−1 computes the derivative ṗ by

operating on the trajectory p(t). We call this matrix the tangent operator, because

it computes the direction tangent to a motion.

Based on the spatial displacement described previously, the motion M(t) is rep-

resented as:

M(t) =




R(t) v(t)

0 0 0 1


 (2.3)
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and its tangent operator is obtained by

ṀM−1 =




Ṙ v̇

0 0 0 0







RT −RTv

0 0 0 1




=




ṘRT −ṘRTv + v̇

0 0 0 0


 ,

where ṘRT is the 3× 3 skew-symmetric matrix.

2.2 Rational Curves and Surfaces

We briefly review some basic definitions and properties for polynomial and rational

curves and surfaces.

2.2.1 Bézier curves and surfaces

The nth-degree Bézier curve is defined by

c(u) =
n∑

i=0

Bn
i (u)pi, 0 ≤ u ≤ 1 (2.4)

The basis(blending) function, {Bn
i (u)}, is the n-th-degree Bernstein polynomial given

by

Bn
i (u) =

(
n

i

)
ui(1− u)n−i. (2.5)

The geometric coefficients of this form, {pi}, are called control points in Euclidean

3-space E3.

It is easy to derive the following properties of Bernstein polynomials {Bn
i (u)}.
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• Subdivision

Bn
i (cu) =

n∑
j=0

Bj
i (c)B

n
j (u).

• Derivative:

d

dt
Bn

i (u) = n[Bn−1
i−1 (u)−Bn−1

i (u)].

• Product:

Bm
i (u)Bn

j (u) =

(
m+n
i+j

)
(

m
i

)(
n
j

)Bm+n
i+j (u).

Tensor product polynomial Bézier surfaces are obtained by taking a bidirectional

net of control points and products of the univariate Bernstein polynomials:

s(u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)Bm

j (v)pi,j, 0 ≤ u, v ≤ 1. (2.6)

Rational version of Bézier curves and surfaces are obtained with weight factor

{wi} and {wi,j} and control points {pi} and {pi,j} in E3, respectively, by

c(u) =

∑n
i=0 Bn

i (u)wipi∑n
i=0 Bn

i (u)wi

, 0 ≤ u ≤ 1 (2.7)

and

s(u, v) =

∑n
i=0

∑m
j=0 Bn

i (u)Bm
j (v)wi,jpi,j∑n

i=0

∑m
j=0 Bn

i (u)Bm
j (v)wi,j

, 0 ≤ u, v ≤ 1. (2.8)

The rational Bézier curves/surfaces are frequently represented in homogeneous coor-

dinates with control points of projective 3 space (P 3) as follows:

c(u) =
n∑

i=0

Bn
i (u)pi where pi = (wipi, wi) ∈ P 3, 0 ≤ u ≤ 1

and

s(u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)Bm

j (v)pi,j where pi,j = (wijpi,j, wij) ∈ P 3, 0 ≤ u, v ≤ 1
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2.2.2 B-Spline curves and surfaces

Let U = {u0, . . . , um} be a nondecreasing sequence of real numbers, i.e., ui ≤ ui+1,

i = 0, . . . , m− 1. The ui are called knots, and U is the knot vector. The i-th B-spline

basis function of degree p(order p+1), denoted by Np
i (u), is defined as

N0
i (u) =





1 if ui ≤ u ≤ ui+1

0 otherwise

Np
i (u) =

u− ui

ui+p − ui

Np−1
i (u) +

ui+p+1 − u

ui+p+1 − ui + 1
Np−1

i+1 (u) (2.9)

A pth-degree B-spline curve is defined by

c(u) =
n∑

i=0

Np
i (u)pi, a ≤ u ≤ b (2.10)

where the {pi} are the control points, and the {Np
i (u)} are the pth-degree B-spline

basis functions defined on the knot vector with (m + 1) knots.

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1, b, . . . , b︸ ︷︷ ︸
p+1

}

In this thesis, we assume that a = 0 and b = 1.

A B-spline curve can be changed into a Bézier one by the well known knot in-

sertion algorithm [23, 59]. The product operation between two B-spline curves can

be computed based on the Bézier curves after we change them into Bézier ones. For

more details, see [43].

A B-spline surface is obtained by taking a bidirectional net of control points, two

knot vectors, and the product of the univariate B-spline functions

s(u, v) =
n∑

i=0

m∑
j=0

Np
i (u)N q

j (v)pi,j (2.11)
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with

U = {0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , ur−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

}

V = {0, . . . , 0︸ ︷︷ ︸
q+1

, vq+1, . . . , us−1−1, 1, . . . , 1︸ ︷︷ ︸
q+1

}

U has r+1 knots, and V has s+1.

A pth-degree non uniform rational B-spline(NURBS) curve is defined by

c(u) =

∑n
i=0 Np

i (u)wipi∑n
i=0 Np

i (u)wi

0 ≤ u ≤ 1 (2.12)

with the knot vector U . The homogeneous form of the curve is represented as:

c(u) =
n∑

i=0

Np
i (u)pi,

where

pi = (wipi, wi)

is the homogenous coordinate of its control point.

A NURBS surface of degree p in the u direction and degree q in the v direction is

defined by

s(u, v) =

∑n
i=0

∑m
j=0 Np

i (u)N q
j (v)wi,jpi,j∑n

i=0

∑m
j=0 Np

i (u)N q
j (v)wi,j

0 ≤ u, v ≤ 1 (2.13)

with two knot vectors U and V and its homogeneous representation is represented as:

s(u, v) =
n∑

i=0

m∑
j=0

Np
i (u)N q

j (v)pi,j, where pi,j = (wi,jpi,j, wi,j).

2.3 Rational Motions

If all elements of a motion M(t) are polynomials of maximal degree k, M(t) is

called a rational motion of degree k. The following Lemma has been derived in [43].
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Lemma 2.1 (Rational Motion)

A motion M(t) is piecewise rational motion of degree k if and only if there exists

a representation

M(t) =




v∗0D(t)

v1

v2

v3

0 0 0 v∗0(d
2
0 + d2

1 + d2
2 + d2

3)




(2.14)

with

D(t) =




d2
0 + d2

1 − d2
2 − d2

3 2(d1d2 − d0d3) 2(d1d3 + d0d2)

2(d1d2 + d0d3) d2
0 − d2

1 + d2
2 − d2

3 2(d2d3 − d0d1)

2(d1d3 − d0d2) 2(d2d3 + d0d1) d2
0 − d2

1 − d2
2 + d2

3




(2.15)

where v∗0(t), vi(t), and di(t) are piecewise polynomials of maximal degree k−2l, k and

l, respectively, where the number l satisfies 0 ≤ 2l ≤ k.

The four parameters d̃ = (d0, d1, d2, d3) are called Euler’s parameters of the rotational

part D(t). The trajectory of the origin of the moving frame is

u = (v1, v2, v3, v
∗
0‖d̃‖2)

in homogeneous coordinates. The Euler parameters have the same role in 3D Rotation

as the unit quaternion q except that they do not have to be a unit 4D vector. The

homogeneous factor of matrix M(t) does normalize D(t) to be D(t)/‖d̃‖2 ∈ SO(3).
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2.3.1 Rational B-Spline motion

Consider a piecewise rational motion M(t) of degree k. Since all elements of M(t)

have to be piecewise polynomials, there exists a B-spline representation

M(t) =
n∑

i=0

Nk
i (t)Ai (2.16)

of degree k, where Nk
i (t) is B-spline basis function defined on a knot vector U =

{u0, ..., um}. The motion of Equation (2.16) is called a rational B-spline motion of

degree k. For every parameter t, the matrix M(t) describes a Euclidean spatial

displacement. Therefore we have the constant coefficient matrices

Ai =




Si

wi,1

wi,2

wi,3

0 0 0 wi,0




.

In general, the submatrices Si do not fulfill the orthogonality condition SiS
T
i = I.

Thus the matrices Ai describe some affine transformations. The set of all control

positions {Ai} is called the control structure of rational B-spline motion (Equation

(2.16)).

For arbitrary affine transformations Ai, the motion of Equation (2.16) will be an

affine motion. A Euclidean rational B-spline motion M(t) of degree k can be obtained

from v0(t)
∗, v(t) = (v1(t), v2(t), v3(t)) and d̃(t) by Lemma 2.1. For more details, see

[74].

B-spline motion of Equation (2.16) has the same form as conventional B-spline

curves. Various algorithms and properties of B-spline curves, such as subdivision,
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knot insertion/removal, and degree elevation/reduction, can also be applied to B-

spline motion [43, 59, 74].

Note that the trace of an arbitrary point p under B-spline motion M(t) generates

a rational B-spline curve

p(t) = M(t)p

The sweep of a rational B-spline curve C(u) under the B-spline motion M(t) generates

a tensor product rational B-spline surface:

S(u, t) = M(t)c(u) (2.17)

This kind of matrix - vector product includes the same procedure with the B-spline

multiplication algorithm applied to the generation of B-spline motion.



Chapter 3

Sweep-based Human Deformation

In this chapter, We present a sweep-based approach to human body modeling

and deformation. In Section 3.1, we briefly review some representative human body

modeling and deformation techniques. Section 3.2 presents our sweep-based human

modeling technique. In Section 3.3, sweep-based human deformation technique is pre-

sented and some special features such as muscle-bulge and skin folding are supported.

Finally, experimental results are presented in Section 3.4.

3.1 Related Work

Hyun et al. [39] and Kalra et al. [44] represent deformable arms and legs using

sweep surfaces. However, they describe no specific method of connecting the limbs

to the main body. In the current paper, we attack this more challenging problem

by smoothly connecting arms and legs to shoulders and hip using a shape blending

technique.

22
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Mohr and Gleicher [57] proposed an extended linear blending scheme which adds

joints to the interior of a link so as to make the link flexible. If we keep on adding

such joints, we end up with infinitely flexible links, which are similar in effect to

our sweep surfaces. There remains the issue of controlling infinitely many degrees of

freedom. Our approach, based on B-spline interpolation, makes it considerably easier

to modify the shape of the controlling sweep surfaces using a few ‘key’ cross-sections.

Allen et al. [2, 3] present algorithms that reconstruct, deform and parametrize

human body shapes from range scan data. In [2], subdivision surfaces were used

for the representation of skeleton-based global shape changes. Starck et al. [32, 70]

control the deformation of a polygonal human model using a simplified mesh. In

bending and twisting motions, sweep surfaces are easier to control than subdivision

surfaces or polygon meshes. To demonstrate this, we present animation test clips in

which virtual 3D human models walk and dance.

Singh and Kokkevis [68] propose a surface-oriented FFD for controlling the skin

deformation of characters. They use a polygon mesh as a driver for the skin deforma-

tion. Our approach is closely related to theirs. Our improvement is in using control

sweep surfaces which fit tightly to the surface of the model and thus control skin

deformation more faithfully.

Many previous authors [5, 10, 62, 78] have presented anatomy-based physical

simulation techniques that produce very realistic modeling and deformation of humans

and animals. We do not propose full-scale anatomical simulation with our simplified

representation. Nevertheless, we can support in real-time some important features

such as muscle-bulge, elbow-protrusion, skin-folding, and volume preservation. The
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real-time performance is the main advantage of our method over previous methods

that rely on physical simulation.

Our algorithm works for arbitrary human models based on boundary representa-

tions such as polygonal meshes, scan data, point clouds, subdivision surfaces, B-spline

surfaces, etc. Thus it is relatively easy to adapt our shape control scheme to conven-

tional techniques such as those of Allen et al. [3] and Seo and Magnenat-Thalmann [65]

for manipulating human models.

3.2 Sweep-based Human Modeling

We approximate human arms, legs, torso and neck using sweep surfaces, which

are then used as control structures for human body deformation. The vertices of a

human model are bound to the sweep surfaces and then follow the transformations of

the sweep surfaces. We apply a shape blending scheme to the areas where different

sweep surfaces meet.

3.2.1 Sweep surface

Sweeps are a powerful paradigm for representing 3D freeform objects based on

simple procedural rules [25, 59]. Examples include translational sweeps and rotational

sweeps. General sweeps of 2D cross-sections are known as generalized cylinders [6, 46].

In this thesis, we consider star-shaped 2D cross-sections that approximate the cross-

sectional shapes of various human body parts.

When a star-shaped cross-sectional closed curve Ot(θ) = (r(θ, t) cos θ, r(θ, t) sin θ, 0)T

is moving under rotation R(t) and translation C(t), it generates a sweep surface
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Figure 3.1: Sweep surface generated by a moving cross-section.

S(θ, t) = C(t) + R(t)Ot(θ) which is precisely described as follows:

S(θ, t) = C(t) + R(t) ·Ot(θ)

=




x(t)

y(t)

z(t)




+




r11(t) r12(t) r13(t)

r21(t) r22(t) r23(t)

r31(t) r32(t) r33(t)



·




r(θ, t) cos θ

r(θ, t) sin θ

0




. (3.1)

The star-shaped cross-section Ôt(θ) lies on a moving plane P (t) which is deter-

mined by a point C(t) and a unit normal vector N(t) = (r13(t), r23(t), r33(t))
T , which

is the third column of R(t).

Figure 3.1 shows how a moving cross-section generates a sweep surface. Note that

the first two columns of R(t) form the major and minor axis directions of the moving

cross-section, and that the normal vector N(t) is not exactly in the same direction as

the tangent vector C ′(t) of the trajectory curve C(t).
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(a) (b)

Figure 3.2: Key cross-sections for the left arm.

3.2.2 Control sweep surface generation

Control sweep surfaces are generated by interpolating a set of ‘key’ cross-sections

that tightly fit the cross-sections of human arms, legs, torso and neck. One key cross-

section is assigned to each joint, and its center is fixed to that joint. The boundary

shape and orientation of each key cross-section is determined by cutting the polygonal

model through a plane orthogonal to the lower link of the joint. Additional key cross-

sections are assigned to intermediate locations on a link (see Figure 3.2(a)). Each

boundary shape of key cross-section is determined by cutting the model through a

plane orthogonal to the link (see Figure 3.2(b)). Intermediate key cross-sections have

centers at the centroids of their cross-sections, which may not lie on the link.

The center positions of key cross-sections are interpolated by a cubic B-spline

curve C(t) using a chord length parametrization for knot spacing. Their orientations

are represented as unit quaternions, qi, i = 0, . . . , n, and linearly interpolated as
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Figure 3.3: Binding a vertex to a control sweep surface.

follows:

Qi(t) = (1− t)qi + tqi+1, for ti ≤ t ≤ ti+1.

Note that the quaternion curve Qi(t) is unnormalized. We use a normalized curve

Qi(t)
‖Qi(t)‖ to form a 3D rotation matrix R(t), each term of which is a rational quadratic

function of t. The sampled radii on each key cross-section are interpolated by the

quadratic B-spline function r(θ, t). The sweep surface S(θ, t) is constructed from

C(t), R(t), r(θ, t) using Equation (3.1).

3.2.3 Vertex binding and reconstruction

A sweep surface is a one-parameter family of cross-sections. Each vertex V on a

human polygonal model is bound to an instance of a moving cross-section, and follows

its transformation. A vertex V is bound to a cross-section Ôt(θ) by solving

< V − C(t), N(t) >= 0,
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where < ·, · > signifies an inner product, and N(t) represents a unit normal vector

of the moving cross-sectional plane. The local coordinate of the vertex V in that

plane is then determined from V̂ = R(t)T (V − C(t)). The circular binding angle θ

is arctan(V̂y/V̂x). Finally, the signed distance d from the control sweep surface is

computed as d = ‖V̂ ‖− ‖S(θ, t)−C(t)‖ = ‖V −C(t)‖− ‖S(θ, t)−C(t)‖. Figure 4.3

shows an example of this binding procedure in which a vertex V is bound to a cross-

section of a control sweep surface using the binding parameters (θ, t, d). When a

sweep surface deforms, the mesh vertex V is reconstructed from the sweep surface

using the following equation:

V = C(t) + R(t)




(r(θ, t) + d) · cosθ

(r(θ, t) + d) · sinθ

0




,

where (θ, t, d) are the binding parameters of the vertex V .

Vertex binding is carried out at the ‘dress’ pose, the initial position of the human

model, at which the sweep surfaces have no self-intersections. Thus each vertex

around a sweep surface will be bound to a unique moving cross-section Ôt. This

binding is fixed for the rest of the deformation. As the arms and legs deform, the

sweep surfaces and the polygonal model may start developing self-intersections. The

interpenetration of deformed vertices with other body parts is prevented by a GPU-

based collision detection procedure, and the skin starts developing creases and then

folds. The details of this will be discussed in Sections 3.3.3.
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3.2.4 Blending sweep surfaces

Figure 3.4 shows a shoulder area, where vertices are bound to two different sweeps

(one for the left arm and the other for the torso). When a vertex V is bound to the

arm sweep, we have

V a = Sa(θa
V , taV ) + Ra(taV )

[
da

V cosθa
V da

V sinθa
V 0

]T

The same vertex V is similarly bound to the torso sweep:

V t = St(θt
V , ttV ) + Rt(ttV )

[
dt

V cosθt
V dt

V sinθt
V 0

]T

Initially, the two vertices V a and V t are located in the same position. As the

shoulder angle changes, the two sweep surfaces deform quite differently and the two

vertices V a and V t follow different paths. We compute the final transformation of V

as a convex combination of V a and V t:

V = (1− wV )V a + wV V t,

where wV is a weighting factor assigned to V . This weighting factor changes smoothly

in the area where the different sweep surfaces meet.

Figure 3.5 shows how the body is segmented into separate regions (torso, arms,

legs). The progression from one gray level to another represents the smooth transi-

tion of weight assignments. In this example, the weights in the transition area are

determined by the relative distances from two bounding planes. Figure 3.6 shows the

deformation of a human model in the region of the shoulder and armpit as the model

lifts its left arm. The displacement is relatively large in the armpit. Nevertheless, the

result of blending two sweep-based representations V a and V t of the polygonal model

V produces a natural body deformation.
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Figure 3.4: Vertices bound to two different sweep surfaces.

Figure 3.5: Smooth transition of weight assignments.
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Figure 3.6: Deformation of shoulder.

3.3 Sweep-based Human Deformation

Human figures in different poses are automatically generated at an interactive

speed as the user controls the skeleton of a human model using inverse kinematics or

motion capture data. The sweep surfaces deform as the joint angles change. The user

can further edit the sweep surfaces to improve the visual realism of the shape defor-

mation. Anatomical features are also supported by a GPU-based collision detection

procedure.

3.3.1 Sweep surface deformation

Sweep surfaces deform to follow changes to their key cross-sections. Each key

cross-section assigned to a joint has its center fixed to that joint, and its orientation
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Figure 3.7: Deformation as the legs bend and spread out.

changes with the joint angle as a function of the relative orientation of the two links

connected to the joint. Other intermediate key cross-sections follow the rigid motion

of the link on which they are located.

The trajectory curve C(t) and the orientation curve Q(t) are recomputed in each

frame to reflect the changing positions and orientations of key cross-sections. The

scalar function r(θ, t) is not updated at this stage.

Figure 3.7 shows the deformation of a human model as it bends and spreads out

its legs. This type of deformation is extremely difficult to carry out using conventional

mesh processing techniques, because there will be many vertices clustered together

in the crotch area of a human model.



Chapter 3: Sweep-based Human Deformation 33

3.3.2 Editing a sweep-based deformation

At extreme joint angles, a sweep-based deformation may not appear quite as

natural as a real human body in the same pose because the sweep-based deformation

does not consider the physical properties of skin and incorporates no anatomical

knowledge. We allow the realism of such deformations to be enhanced by enabling

the user to edit the control sweep surfaces.

The user can edit deformed human shapes by changing shape parameters for the

key cross-sections that generate the control sweep surfaces. The position, orientation

and radii of key cross-sections can all be changed and the human model will deform

to follow these changes. Figure 3.8(b) shows the result of changing the orientation

of only one key cross-section from Figure 3.8(a) to improve the deformation. The

orientation of the key cross-section is a function of the shoulder joint angle. Thus

the change of orientation at an extreme angle modifies this function smoothly using

spline interpolation.

3.3.3 Anatomical features

Some anatomical features are very significant in the visual realism of body de-

formations: for example, elbow-protrusion, muscle-bulge, and skin-folding as an arm

bends. We emulate these effects using a GPU-based collision-detection procedure.

Figure 3.9(a) shows the result of collision detection between the elbow-bone and

the skin surface (shown in red), and also the result of detecting a self-intersection

of the skin surface (shown in light green). Figure 3.9(b) shows similar results for

knee bending. The polygon mesh around the collision region must deform according
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(a) (b)

Figure 3.8: Editing sweep deformations: (a) an automatically generated shoulder and
(b) the result of editing one of its key cross-sections.

to the type of collision and its penetration depth. Our implementation of collision

detection is based on the work of Govindaraju et al. [28], where GPU-based hardware

programming was used to improve performance. For the computation of penetration

depth, we use a software implementation.

A different approach is used to emulate muscle-bulge, an effect which is demon-

strated in Figure 3.10. As the arm bends, the binding of skin vertices to underlying

muscles is activated by increasing the weights influencing the muscles. The user can

further edit the extent of muscle-bulge by changing the sweep parameters. Other

anatomical features can also be emulated by adding sweep surfaces and binding skin

vertices to these sweeps.

The sweep surfaces are generated so that they have no self-intersections when the

body is in the initial ‘dress’ pose. Self-intersections start to develop in the region

near a joint as the joint angle changes. A real human arm develops creases as it
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(a)

(b)

Figure 3.9: Elbow and knee protrusions and skin-folding.
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Figure 3.10: Muscle-bulge.

bends; and the skin folds as the arm or the leg bends further. We emulate these

effects using a GPU-based collision detection procedure. Once all triangles in the

region of self-intersection have been detected, we construct a bisecting plane for the

self-intersection by fitting a plane (using least squares) to their vertices. The distance

from this plane to each vertex gives the penetration depth of the vertex. By pulling

the vertices back to the bisecting plane, we can generate skin-folding effects as an

arm or leg bends. Figure 3.9 shows examples of skin-folding.

Elbow and knee protrusion effects are also realized using GPU-based collision de-

tection. The penetration depth of each skin vertex in the collision region is computed

by shooting a ray to the triangles of the bone in the collision region. The vertex is

then pulled back to the exterior of the protruding bone.

3.4 Experimental Results

We have implemented our sweep-based human modeling and deformation algo-

rithm in C++ on a P4-2GHz computer with a 1GB main memory and an NVIDIA
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GeForce FX5700 GPU. Both the female model, ‘Victoria’, and the male model,

‘Michael’, were purchased from a commercial provider (http://www.daz3d.com). Each

model has 72,712 vertices and 143,444 triangles. Motion capture data were re-targeted

to these models using FilmBox [45].

Figure 3.11 shows snapshots from animation clips we have generated to demon-

strate the effectiveness of our approach. Each animation was generated by our system

at about 7 frames per second, including all rendering processes. However, this frame

rate does not include the time spent on supporting special features such as anatomy

or volume preservation.

In emulating the special features of an arm, our system generates 11–12 frames per

second, not including the rendering time. A sweep-based arm deformation, including

muscle-bulge, is applied to approximately 20,000 triangles in the arm. This takes

about 30–35% of the total processing time for a bending arm. After that, GPU-based

collision detection is applied to a smaller set of 4400 triangles, which takes about 60–

65% of the processing time. Elbow-protrusion and skin-folding effects are computed

using these triangles in a software implementation. This process also includes the

construction of the bisecting plane and computing the penetration depth of skin

vertices. The performance for a leg model is slightly better since the muscle-bulge

effect is not considered in this case.

3.5 Summary

We have shown that sweep surfaces provide an excellent control mechanism for

deforming polygonal meshes which represent human models. Once a model has been
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(a)

(b)

Figure 3.11: Snapshots from animation clips: (a) ‘Victoria’ in a ballet motion and
(b) ‘Michael’ doing a ‘techno’ dance motion.
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approximated with simple sweep surfaces, it is relatively easy to control the body

shape using a small number of sweep parameters. Anatomical features are supported

at an interactive speed using a GPU-based collision detection procedure. It is still

difficult to apply all these features to a whole human model at an interactive speed.
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Sweep-based Freeform Deformation

In this chapter, we extend the sweep-based human deformation technique to the

freeform deformation (FFD) of three-dimensional objects. In Section 4.1, we briefly

review some representative FFD techniques. Section 4.2 introduces our sweep-based

approach to freeform deformation. In Section 4.3, we propose three control techniques

for sweep surfaces and in Section 4.4 we discuss interactions among deformations of

different parts of an object. Finally, experimental results are presented in Section 4.6.

4.1 Related Work

FFD techniques employ different types of control lattices to construct three-

dimensional volumes that surround the objects to be deformed. Sederberg and

Parry [64] used parallelepiped control lattices. Coquillart [18] extended the types

of control lattice to include cylindrical lattices and lattices located on surfaces. Using

the Catmull-Clark subdivision scheme, MacCracken and Joy [56] further extended

40
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the capability of FFD by introducing lattices of arbitrary topology. Recently, Song

and Yang [69] extended the T-spline which was introduced by Sederberg et al. [63]

and proposed a freeform deformation with weighted T-spline.

Barr [7] proposed a simple deformation technique for stretching, twisting, bending

and tapering solid primitives. This method is essentially the application of a one-

parameter family of affine transformations to the cross-sections of an object along

its axis. Chang and Rockwood [12] clarified the underlying affine structure of this

approach in a systematic way. Lazarus et al. [51] presented a general deformation

scheme that is based on a coordinate frame that moves along the axis of an object.

Singh et al. [67] proposed a deformation technique that uses a parametric curve and

influence function. Hyun et al. [38] considered the deformation of a human body

model using sweep surfaces.

These methods all provide some sort of intuitive handle on the deformation of

an object. In this thesis, we further extend these results so as fully to utilize the

underlying affine structures of the moving frames. Our approach offers effective ways

of controlling the deformation of an object while preserving a visual resemblance to

its original shape. An important advantage of this approach is that we can support

various types of interaction among different parts of an object.

Recently, some new deformation techniques have been proposed. Hua and Qin [37]

presented a modified FFD in which they employ a scalar field as the embedding space

instead of a volume. The vertices of an object are parameterized by the level-set of

a scalar field and follow its deformation. Angelidis et al. [4] introduced a volume-

preserving operator as a shape deformation tool. Simplified polygonal meshes can also
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be used as control structures [68, 16], as can continuous parametric surfaces [24, 13].

Yoshizawa et al. [80] presented a skeleton-driven mesh deformation technique in which

they used a Voronoi-based skeletal mesh as a control structure for freeform models.

Ju et al. [42] generalized mean-value coordinates from closed 2D polygons to closed

triangular meshes and applied them to mesh deformation. Using a rigid motion-

invariant mesh representation, Lipman et al. [55] proposed an interactive mesh editing

and shape interpolation technique.

To improve the controllability of FFDs, a number of direct manipulation tech-

niques have been proposed. Hsu and Kaufman [35] introduced the direct manipulation

of FFDs, and later Hu et al. [36] presented an explicit solution to this problem using

constrained optimization. Chang et al. [11] also proposed the direct manipulation of

a generalized cylinder, which is somewhat similar to our sweep surface.

4.2 Sweep-based Freeform Deformation

Sweeps are a procedural modeling technique for representing three-dimensional

freeform objects [25, 59]. In this section, we describe our sweep-based FFD.

4.2.1 Sweep surface from a continuous motion

A sweep surface generated by a continuous motion provides a nice control struc-

ture for FFDs. Let {Xi} be a set of key cross-sections. Each key cross-section Xi is

associated with a local transformation Ti−1,i (represented by a 4×4 matrix) from the

previous key cross-section Xi−1. Thus, when a key cross-section Xj changes its posi-

tion and orientation, all the following key cross-sections Xk(k > j) are automatically
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(a) (b)

Figure 4.1: Sweep surface:(a) key cross-sections, (b) resulting sweep surface.

updated by a series of relative transformations. This arrangement facilitates intuitive

deformations such as bending and twisting.

Our sweep surface is generated by interpolating these key cross-sections {Xi}:

S(θ, t) = C(t) + R(t) ·Ot(θ)

=




x(t)

y(t)

z(t)




+




r11(t) r12(t) r13(t)

r21(t) r22(t) r23(t)

r31(t) r32(t) r33(t)



·




r(θ, t) cos θ

r(θ, t) sin θ

0




,

where Ot(θ) represents a star-shaped cross-sectional closed curve and C(t) and R(t)

describe its position and orientation respectively.

Figure 5.1(a) shows a set of key cross-sections and Figure 5.1(b) shows the sweep

surface generated by interpolating them. As shown in Figure 5.1, our sweep surface

represents a time-variant star-shaped cross-section by a scalar radius function r(θ, t).

This sweep surface can be used as a control structure for bending, twisting and
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tapering. Moreover, to achieve local deformations, we can change the cross-sectional

shape of a sweep surface by modifying the scalar radius function r(θ, t).

If the sweep surface S(θ, t) has no self-intersection, it bounds a volume of magni-

tude

∫
A(t) 〈N(t), C ′(t)〉 dt, (4.1)

where A(t) is the area of the cross-section Ot(θ) (see [66]) and N(t) is a unit normal

vector of the moving cross-sectional plane, which appears as the third column vector

of R(t). In Section 4.4, we will show how to use this simple integral formula to solve

an interaction problem while preserving (both absolute and relative) volumes among

multiple deformations.

4.2.2 Control sweep surface construction

Before changing the shape of an object, its deformable parts must be approximated

by sweep surfaces. We start by selecting the parts to be deformed and creating initial

control sweep surfaces which enclose those parts. Figure 4.2(a) shows the leg of the

well-known Armadillo model and an initial control sweep surface.

In the second step, key cross-sections are computed by cutting the polygonal model

of the selected part with planes. The center of each key cross-section is computed, and

then radii from the center to the boundary vertices of the cross-section are sampled.

Figure 4.2(b) shows a key cross-section with sampled radii. A control sweep surface

can then be constructed by interpolating these key cross-sections. The centers of the

key cross-sections are interpolated by a cubic B-spline curve C(t) using chord length

parametrization, and their orientations (represented by unit quaternions) are linearly
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interpolated and normalized to form a rotation matrix R(t). The sampled radii on

each key cross-section are interpolated by a B-spline function r(θ, t). Figure 4.2(c)

shows the control sweep surface constructed by interpolating the computed key cross-

sections.

In the third step, we can manually edit the positions and orientations of these key

cross-sections, insert additional key cross-sections if necessary. Then the second and

third steps are repeated until a tightly fitting surface has been generated.

Figure 4.2(d) shows a control sweep surface constructed in this iterative way in-

cluding the insertion of some additional key cross-sections with manually adjusted

orientations. Figures 4.4(b) and 4.5(b) show control sweep surfaces for all the de-

formable parts of a dinosaur and a bunny model.

4.2.3 Vertex binding and deformation

Once a control sweep surface has been constructed, the vertices in the part of the

original model that is to be deformed are bound to that surface. To do this, we first

compute the cross-sectional plane that contains a vertex v by solving

< v − C(t), N(t) >= 0,

where < ·, · > signifies an inner product, and N(t) represents a unit normal vector

of the moving cross-sectional plane. The local coordinate of the vertex v in that

plane is then determined from v̂ = R(t)T (v − C(t)). The circular binding angle θ

is arctan(v̂y/v̂x). Finally, the signed distance d from the control sweep surface is

computed as d = ‖v̂‖ − ‖S(θ, t)− C(t)‖ = ‖v − C(t)‖ − ‖S(θ, t)− C(t)‖. Figure 4.3
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(a) (b)

(c) (d)

Figure 4.2: Control sweep surface construction:(a) the selected part of the Armadillo
leg and the initial control sweep surface, (b) a key cross-section and sampled radii, (c)
an intermediate control sweep surface, and (d) the final tightly fitting control sweep
surface.
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Figure 4.3: Binding a vertex to a control sweep surface.

shows an example of this binding procedure in which a vertex v is bound to a cross-

section of a control sweep surface using the binding parameters (θ, t, d).

During a deformation, the user can change the shape of the control sweep surface

to which all the vertices of the deformable part are bound. Then all the vertices of

that part can be reconstructed using the following equation, and will then track the

deformation of the control sweep surface.

v = C(t) + R(t)




(r(θ, t) + d) · cosθ

(r(θ, t) + d) · sinθ

0




. (4.2)

Figures 4.4(c) and 4.4(d) show the deformation of a dinosaur model and Figures 4.5(c)

and 4.5(d) show the deformation of the neck and ears of a bunny model, all of which

we achieved by editing the positions and orientations of a few key cross-sections.
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(a) (b)

(c) (d)

Figure 4.4: Sweep-based deformations:(a) dinosaur model, (b) control sweep surfaces,
(c) and (d) deformations of the dinosaur model.



Chapter 4: Sweep-based Freeform Deformation 49

(a) (b)

(c) (d)

Figure 4.5: Sweep-based deformations:(a) bunny model, (b) control sweep surfaces,
(c) and (d) deformation of the ears and neck.
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4.3 Sweep Surface Control

In this section, we will introduce three types of control technique for sweep sur-

faces: editing key cross-sections; directly controlling a point on a sweep surface; and

controlling the position and orientation of an arbitrary cross-section. We start with

the editing of key cross-sections and move on to the higher-level control techniques,

which provide more intuitive and effective deformations.

4.3.1 Editing key cross-sections

We now consider how to apply various deformations such as bending, twisting,

and tapering to sweep-based models by editing their key cross-sections. During a

deformation, a user can select one key cross-section Xi and edit its local position

and orientation Ti−1,i with respect to the previous key cross-section Xi−1. These

changes affect consecutive key cross-sections {Xk}, k = i, i + 1, · · · , n, and update

their global positions and orientations {T0,k}. Alternatively, we can edit a key cross-

section Xi independently of other key cross-sections. We can also easily edit the

radius function r(θ, t) of key cross-sections, in addition to transforming them. The

edited key cross-sections are interpolated and the corresponding sweep surface is

constructed. Figure 4.6 shows the results of these editing operations.

4.3.2 Direct control of a surface point

Sometimes a user wants to deform the shape of an object directly by editing

points on its boundary. When the user picks and manipulates a vertex v with binding

parameters (θ, t, d), the corresponding cross-section moves and rotates, resulting in
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(a) (b) (c)

Figure 4.6: Editing key cross-sections by changing their: (a) position, (b) orientation
and (c) radius.

a new configuration, and S(θ, t) must change to accommodate this offset. The basic

idea of our technique is to edit appropriate key cross-sections so that the sweep surface

passes through the changed target point. However, the relation between a point on

a sweep surface and its key cross-sections is highly non-linear, and there are many

possible ways to modify a sweep so that its surface contains a specified point.

Figure 4.7 shows a strategy based on an infinitesimal editing operation. The user

picks a point v on a sweep surface and moves it to a point v′, which generates a

difference vector ∆v at the vertex v. Our strategy is to divide ∆v into a linear

component ∆t and an angular component ∆q, and then to start a numerical target

tracking process. We first select the lower key cross-section Xi, and consider a sphere

centered at the origin pi of Xi, with radius ‖v − pi‖. The vertex v′ is then projected

on to the sphere, where it generates a new vertex v′′. The linear component ∆t

is the difference v′′ − v′, and the rotational axis is computed as the cross product
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Figure 4.7: The separation of a difference vector ∆v.

(v′′ − pi) × (v − pi) and then normalized. The magnitude of ∆q, which determines

the rotation of the cross-section, is computed as follows:

‖∆q‖ = arccos

(
< v − pi, v

′′ − pi >

‖v − pi‖ · ‖v′′ − pi‖
)

.

By applying both the linear and angular difference vectors to the key cross-section

Xi, the vertex v approaches the target position v′ when a new sweep surface is con-

structed. To achieve convergence, we repeat this procedure until the distance from v

to v′ is reduced within a given tolerance. For stability, we propagate control to the

k lower key cross-sections Xi, · · · , Xi−k+1, starting from the lowest key cross-section

Xi−k+1 and ending at Xi. In general, each key cross-section has 6 degrees of freedom

and there are a number of possible ways to bring the sweep on target, of which our

technique is only one. Alternatively, we can use just one of the difference vectors to

achieve other types of control. Figure 4.8(a) shows a point selected by the user v (in

black), the target position v′ (in red), and the affected key cross-sections (in green).
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(a) (b)

Figure 4.8: Direct control of a sweep surface.

Figure 4.8(b) shows the result of the control process, in which both the linear and

angular components of the change have been combined.

4.3.3 Direct control of an arbitrary cross-section

We now propose another direct control technique for a sweep surface. (Later, we

will use this technique to support hierarchy-based interactions among different parts

of an object.) During a deformation, the user selects a point on a sweep surface and

changes the position and orientation of the cross-section that contains that point. In

Figure 4.9(a), Xu is the selected cross-section and X ′
u is the new cross-section. We

edit the key cross-section Xi which is closest to Xu, assuming that Xu will follow Xi

to a large extent, and repeat this process until the transformational distance between

Xu and X ′
u is reduced within a given tolerance. Figure 4.9(b) shows the direct control

of the cross-section Xu using this method. Although we only edited Xi in Figure 4.9,
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(a) (b)

Figure 4.9: Direct control of an arbitrary cross-section.

this method can be extended to the editing of multiple key cross-sections, as discussed

above.

4.4 Interactions among Deformations

We will now consider the problem of simultaneously controlling the interaction

between a number of different deformations of an object using multiple control han-

dles. As a simple example, we will edit the Utah teapot, using separate handles to

control the body, spout and handle. Each of these components is approximated by

a sweep surface, and its shape is changed by controlling that surface. We need to

maintain the consistency of the model’s topology during deformations. For example,

when the user bends the handle, the body should follow. When the body is modified,

the handle and the spout need to track the deformation of the body. We require a
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mechanism to specify the hierarchy of these deformations, and rules to control their

interactions (see Figure 1.3).

4.4.1 Hierarchy of sweep surfaces

We now show how we specify a hierarchy of sweep surfaces. In the teapot exam-

ple of Figure 1.3(b), the body is a root node, and the handle and the spout are child

nodes. A hierarchy is then specified by binding key cross-sections of child nodes to

cross-sections of their parent node. In the teapot example, there are two types of

child node. One is a loop, for the handle, and the other is a branch, for the spout.

As shown in Figure 4.10, both the first and last key cross-sections of the handle node

(loop type), namely Xhandle
first and Xhandle

last , are bound to cross-sections of the body,

namely Xbody
handle-first and Xbody

handle-last. But for the spout node (branch type), only the

first key cross-section of the spout, Xspout
first , is bound to cross-section Xbody

spout-first of the

body. The binding of a key cross-section is a simple extension of the vertex binding

technique introduced in Section 4.2, and can be represented by the binding param-

eters (θ, t, d, q̂). For example, the three binding parameters (θhandle
first , thandle

first , dhandle
first )

represent the displacement of the center of the key cross-section Xhandle
first from the

body sweep surface, as expressed in Equation (4.2), and the fourth binding param-

eter q̂handle
first represents its relative orientation to the cross-section Xbody

handle-first of the

body sweep surface. Using this binding information, the bound key cross-sections

change their positions and orientations when the sweep surface of their parent node

is deformed. In the teapot example of Figure 1.3(c), the handle is a root node, the

body is a child node and the spout is a grandchild node. The rest of the interactions
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Figure 4.10: Binding of key cross-sections.

can be realized in a similar fashion.

4.4.2 Hierarchy-based interactions

Once the cross-sections of all child nodes have been bound to the sweep surface of

their parent node, following the hierarchical structure, we need to solve the problem

of interactions among multiple deformations.

In the teapot example, when the user changes the shape of the body, the handle

and the spout should follow the deformation of the body. The first key cross-section

Xspout
first of the spout is simply updated using its binding parameters (θspout

first , t
spout
first ,

dspout
first , q̂

spout
first ), and then the positions and orientations of the rest of the key cross-

sections Xj, j = 2, ..., n, are automatically updated using the local transformations

Tj−1,j from the previous key cross-section Xj−1. The control sweep surface of the spout

node is then reconstructed by interpolating the updated key cross-sections, and all

vertices bound to that sweep surface are also reconstructed using their binding pa-

rameters. For the handle, the problem becomes more complicated. We can easily
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compute the new positions and orientations of the two key cross-sections Xhandle
first and

Xhandle
last from their binding parameters. But this may result in an undesirable defor-

mation because the intermediate key cross-sections are not considered. So then we

compute the difference between the new transformation of the last key cross-section

Xhandle
last and its old transformation. Finally, we apply our direct control technique to

the last key cross-section Xhandle
last , using the difference between these transformations.

When the direct control technique is applied, all key cross-sections except the first

one Xhandle
first are updated iteratively, and the result is a natural deformation of the

handle. Figure 1.3(b) shows a deformation of the teapot body in which the handle

and the spout change their shapes automatically so as to maintain the topology of

the teapot model as the body changes its shape.

In the case of the deformation of the spout, we do not need to take any additional

action, because there is no topological constraint on the spout and it can deform

independently. But when we modify the handle, we need to deform the body as well,

so that the loop-type topology of the handle and the body is maintained. Figure 4.11

shows the broken topology that occurs when we do not consider the simultaneous

control of deformations. To maintain the teapot’s topology, we need to apply our

direct control technique to the cross-section Xbody
handle-last of the body to which the last

key cross-section Xhandle
last of the handle is bound (see Figure 4.10). When a user de-

forms the control sweep surface of the handle node, the last key cross-section Xhandle
last

changes its position and orientation. From the new values we can compute the tar-

get position and orientation of the cross-section Xbody
handle-last of the body node. The

difference between the target and the previous transformation of the cross-section
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Figure 4.11: Broken topology during a deformation.

Xbody
handle-last is then computed. Finally, using the direct control technique for an ar-

bitrary cross-section which we introduced in Section 4.3, we can control the sweep

surface of the body so that its cross-section Xbody
handle-last coincides with the target po-

sition and orientation, thus maintaining the topological constraints on the teapot

model. Figure 1.3(c) shows the result of a deformation of the handle, in which the

body and spout change their shapes automatically as the user bends the handle.

4.4.3 Volume-preserving interactions

The volume of a sweep surface is given in Equation (4.1). Using this integral

formula, we have developed two simple interaction rules which can be applied to

deformations of an object with multiple control handles. The first is a total vol-

ume preservation rule which maintains the overall volume of an object during a

deformation. When the deformable part of an object changes its shape, it generates

a change ∆V in the volume of this part. This difference ∆V is uniformly divided

between each control handle, and each radius function r(θ, t) is updated to reflect
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(a) (b)

Figure 4.12: Volume-based interactions:(a) total volume preservation, (b) volume
ratio preservation.

to the proportion of the volume distributed to that handle. First, the target volume

of each control handle is computed. We then increase or decrease the sampled radii

of each key cross-section and repeat the process until the target volume is reached.

Figure 4.12(a) shows the result of a deformation of the teapot using the volume-

preservation rule, in which the spout and the handle increase their volumes as the

body shrinks. The second interaction rule is a volume ratio preservation rule,

which maintains the ratio of the volume of a child node to that of its parent node.

This rule is implemented using a similar update of the radii of key cross-sections, em-

bedded within an iteration process. Figure 4.12(b) shows the result of a deformation

using the volume ratio-preservation rule, where the ratio between the volumes of the

spout and handle, and that of the body, are preserved.
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4.5 Local Deformation

In this section, we extend our sweep-based approach to local deformations. Al-

though our technique supports local deformation by editing a radius function r(θ, t),

this is limited to achieving a cross-sectional change in an object. We propose two

other types of local deformations. One changes the local shape of an object boundary

using a sweep surface and an influence function. The other captures the local shape

of an object (for instance by means of a displacement map) and then transfers it to

other objects.

4.5.1 Local deformation by an influence function

We start by creating a control sweep surface on an object boundary. All vertices

v of the object contained in the interior of the sweep are bound to the sweep surface

and assigned their influence weights w as follows:

w = f(u), 0 ≤ u

(
=

r(θ, t)− d

r(θ, t)

)
≤ 1,

where f(u) is a monotonically decreasing function such that f(0) = 1 and f(1) = 0,

and d is the distance between v and S(θ, t). Figure 4.13(a) shows an influence function

represented by a B-spline function, and Figure 4.13(b) shows a control sweep surface

for a local deformation, with the weight assignments shown as grey levels. When the

sweep surface deforms, the resulting positions v′ of the vertices in the interior of it

are linearly blended as follows:

v′ = (1− w) · v0 + w · v,
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(a) (b)

Figure 4.13: Weight function and control sweep surface.

(a) (b)

Figure 4.14: Local deformations.

where v0 are the initial positions of the vertices in the interior of sweep surface and v

are their reconstructed positions using Equation (4.2). Figure 4.14 shows the result

of local deformations used to engrave a character C on a plane. In Figure 4.14(b),

the character is edited further to generate a wavy pattern. This shows how we can

achieve a local deformation of an object boundary.



Chapter 4: Sweep-based Freeform Deformation 62

4.5.2 Shape transfer

We also propose a new technique for transferring shape information from one

deformable part to other parts using our sweep-based approach. Once all vertices

of a source part have been bound to the control sweep surface, we can transfer the

local shape of the source part to a target part using the parameterizations of their

control sweep surfaces. The shape of the source part is effectively captured by its

control sweep surface and a displacement function that represents its detailed geom-

etry. (Since the displacement values have irregular binding parameters, we use a the

scattered data interpolation technique [54] to construct the displacement function.)

The vertices of the source and target parts are then bound to their respective sweep

surfaces, which have corresponding parameterizations. To achieve a shape transition,

we replace the radius function r(θ, t) of the control sweep surface of the target part by

that of the source part. And we also apply the displacement values d of the binding

parameters (θ, t, d) of the source part to the vertices of the target part. This transfer

the shape of the source part to the target part. Figure 4.15(a) shows the leg of an

Armadillo model and a control sweep surface that approximates it. Figure 4.15(b)

shows the irregular displacement values and a displacement function that interpolates

them. Figure 4.15(c) shows the target part to which the shape of the source part is

to be transferred. Figure 4.15(d) shows the resulting shape transition.
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(a) (b) (c) (d)

Figure 4.15: Shape transition.

4.6 Experimental Results

We have implemented our sweep-based freeform deformation technique in C++

on a P4-3.2GHz PC with a 2GB main memory. Our deformation technique works in

real-time for all the test examples presented in this thesis; it is simple to implement

and easy to use. The most time-consuming step is to construct control sweep surfaces

for all the deformable parts of an object. This usually takes from five to ten min-

utes. To minimize this construction time, we have developed a user interface which

includes a semi-automatic process to compute key cross-sections, and their positions

and orientations can subsequently be edited manually. The processing time for ver-

tex binding step depends on the number of vertices to be bound to a control sweep

surface. Table 4.1 lists the number of vertices in each model and the time required

for vertex binding.

Figure 4.16 shows the results of the direct deformation of a bunny model using

five control sweep surfaces. In Figures 4.16(a) and 4.16(c), the user picks a vertex



Chapter 4: Sweep-based Freeform Deformation 64

Table 4.1: Number of vertex and binding time (sec).

Models Bunny Dinosaur Teapot

Number of vertices 19,226 14,048 12,882
Time for vertex binding 21.714 16.580 13.820

with the binding parameters (θ, t, d) and specifies its target position, which generates

a displacement vector. Our direct control technique is then applied to the point

S(θ, t) on the sweep surface. In Figure 4.16(b), only the translational component of

the displacement vector is considered; while in Figure 4.16(d), only the rotational

component is considered. Figure 4.17 shows the deformation of a teapot model, using

the hierarchy-based interaction rule combined with editing of the radius function

r(θ, t) to achieve a local deformation.

We have also extended our technique to support arbitrary interactions among de-

formable parts. In Figure 4.18(a), four legs of a chair model are approximated by

control sweep surfaces. To facilitate interactions among them, they are virtually inter-

connected by three auxiliary sweep surfaces (shown in red and cyan). Figure 4.18(b)

shows the deformation of a front leg with no interaction. In Figure 4.18(c) the user

changes the shape of a single leg and both front legs change their shapes because of

the presence of a virtual sweep that connects them. In Figure 4.18(d) three virtual

sweeps are involved, and all four legs of the chair become elongated.

4.7 Summary

We have extended the sweep-based human deformation technique to a freeform

deformation and also shown that this approach provides an excellent control mech-
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(a) (b) (c) (d)

Figure 4.16: Direct deformations of a bunny model.

Figure 4.17: Deformations of a teapot model.

(a) (b) (c) (d)

Figure 4.18: Deformations of a chair model.



Chapter 4: Sweep-based Freeform Deformation 66

anism for deforming arbitrary three-dimensional objects. Once an object has been

approximated with sweep surfaces, it is easy to control shape deformations using a

small number of sweep parameters. We have also proposed various control techniques

for sweep surfaces, which allow the user to change the shape of an object intuitively

and effectively. When an object has multiple deformable parts, it is straightforward

to build a hierarchy of deformations using sweeps, and it is also easy to describe the

interactions among them. Moreover, our approach supports local deformations by the

editing of a radius function r(θ, t). The main difficulty in our approach is the con-

struction of the control sweep surfaces, which requires some user intervention. This

can be ameliorated by incorporating convenient user interfaces or advanced surface

fitting techniques.



Chapter 5

Sweep-based Elastic Deformation

In this chapter, we introduce an elastically deformable sweep surface and further

extend a sweep-based approach to the elastic deformation of three-dimensional ob-

jects. In Section 5.1, we briefly review some representative techniques for modeling

deformable objects. Section 5.2 introduces the details of our elastic sweep surface

model. In Section 5.3, we describes how the elastic sweep surface responds to user in-

teractions. Sweep-based elastic deformation technique is then presented in Section 5.4

and experimental results are presented in Section 5.5.

5.1 Related Work

Since the pioneering work of Terzopoulos et al. [71], modeling deformable objects

has attracted considerable research attention in computer graphics. A wide variety

of different approaches have been proposed during the last three decades. Gibson

and Mirtich [26] provide a comprehensive survey on this topic ranging from purely

67
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geometric approaches to physically-based ones.

Sederberg and Parry [64] introduced freeform deformation (FFD), which is a

representative method for modeling deformable objects. They employed a paral-

lelepiped control lattice to define a tri-variate volume enclosing a deformable object

and changed the object shape by deforming the control lattice. Coquillart [18] ex-

tended the control lattice to a cylindrical lattice and also a lattice located on top of

a surface. Using the Catmull-Clark subdivision scheme, MacCracken and Joy [56]

further extended the capability of FFD to lattices of arbitrary topology. Recent

work [38, 53] proposed different approaches for freeform shape deformation. In these

approaches, a sweep surface is employed as a control structure which provides an

excellent control mechanism for modifying existing shapes.

The conventional techniques [18, 53, 56, 64] are computationally efficient and pro-

vide a number of control parameters for details of shape deformations in a static sense,

e.g. from one shape to a different shape. However, it is rather difficult to produce

physically plausible continuous deformations. To overcome these limitations, many

previous work explored physically-based methods for modeling deformable objects.

By simulating physics rules, these methods produces realistic deformation results in

a continuous animation.

Mass-spring systems are a well-established technique in physically-based defor-

mation. Thanks to their simple structure and real-time simulation performance, the

mass-spring systems have been widely used for modeling deformable objects. Platt

and Badler [60] employed static mass-spring systems for animating facial expressions

and Waters [76] extended this method to a more sophisticated model. Terzopoulos
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and Waters [72] developed a 3D hierarchical model of a human face using dynamic

mass-spring systems and extended this technique to facial models of particular in-

dividuals using laser-scanned image data [77]. Tu and Terzopoulos [73] proposed a

mass-spring dynamic fish model and developed a physics-based virtual marine world

to simulate their behaviors. Recently, Choi et Ko [14] proposed a semi-implicit cloth

simulation technique using mass-spring systems, while achieving significant improve-

ments in both stability and realism.

Chadwick et al. [10] simulated muscles in human character animation by combined

mass-spring systems with FFD [64], whereas other techniques [14, 60, 72, 73, 76, 77]

explicitly modeled deformable objects. The muscles were embedded in control lattices

of mass-spring elements and deformed by forces applied to the control lattices. Our

approach is similar to Chadwick et al. [10] by combining a geometric approach and

physically-based one. The main difference is in the underlying control structure. We

employ an elastic sweep surface instead of control lattices. The elastic sweep surface

provides an intuitive and efficient control mechanism; moreover, we can demonstrate

various other advantages such as real-time performance and numerical stability.

Modeling deformable objects as continuums and simulating their deformations

using finite element methods (FEM) is also a very well-established technique in

physically-based approaches. Celniker and Gossard [9] applied FEM to freeform shape

design paradigm and Gouret et al. [27] used FEM to simulate interactions between a

human hand and a deformable object in a grasping task. Although these FEM-based

approaches using FEM reflect physics more faithfully than the mass-spring systems,

they are computationally more expensive and thus they are not suitable to real-time
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applications.

To reduce the computational complexity of FEM, Pentland and Williams [58] first

introduced a modal analysis for simulating deformations in computer graphics. They

transformed the standard FEM system to linearly independent equations, each of

which describes a vibrational mode of an object. Although this approach significantly

accelerates the simulation of a deformable object, the modal analysis still generates

noticeable artifacts when applied to large deformations or rotational deformations.

Recently, Choi and Ko [15] extended the modal analysis and proposed a modal warp-

ing technique with real-time performance for large rotational deformations. They

identified the rotational components of an infinitesimal deformation and developed a

procedure to integrate them to simulate large bending or twisting deformations.

5.2 Elastic Sweep Surface

We describe a sweep surface model with elastically deformable property.

5.2.1 Sweep surface

We employ the sweep surface introduced in Chapters 3 and 4. The sweep surface

is generated by interpolating key cross-sections {Xi} as follows:

S(θ, t) = C(t) + R(t) ·Ot(θ)

=




x(t)

y(t)

z(t)




+




r11(t) r12(t) r13(t)

r21(t) r22(t) r23(t)

r31(t) r32(t) r33(t)



·




r(θ, t) cos θ

r(θ, t) sin θ

0




,
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where Ot(θ) represents a star-shaped cross-sectional closed curve and C(t) and R(t)

describe its position and orientation, respectively.

Each key cross-section Xi is associated with a local transformation Ti−1,i (repre-

sented by a 4 × 4 matrix) from the previous key cross-section Xi−1. Thus, when a

key cross-section Xj changes its position and orientation, all the following key cross-

sections Xk(k > j) are automatically updated by a series of relative transformations.

This arrangement facilitates intuitive deformations such as bending and twisting.

The centers of the key cross-sections are interpolated by a cubic B-spline curve

C(t) using chord length parametrization, and their orientations (represented by unit

quaternions) are linearly interpolated and normalized to form a rotation matrix R(t).

The sampled radii on each key cross-section are interpolated by a B-spline function

r(θ, t). Figure 5.1(a) shows these key cross-sections and Figure 5.1(b) shows the sweep

surface generated by interpolating them. As shown in Figure 5.1, our sweep surface

represents a time-variant star-shaped cross-section by a scalar radius function r(θ, t).

5.2.2 Key cross-section with mass-spring systems

We enhance the capability of key cross-sections by including mass-spring systems.

We devise three types of mass-spring systems for the elastic changes of the position,

orientation and radii of a key cross-section respectively.

The elastic change of the position of a key cross-section is realized by a posi-

tional mass-spring system. Figure 5.2 shows a key cross-section Xi with a mass-

spring system. The origin of Xi oscillates around the initial position of Xi in the

simulation process. Although this positional mass-spring system results in the po-
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(a) (b)

Figure 5.1: Sweep surface:(a) key cross-sections, (b) resulting sweep surface.

sition in a three-dimensional space, it is essentially represented by a distance in a

one-dimensional space. Figure 5.3(a) shows the initial position of a cross-section (in

red) and Figures 5.3(b)-(e) show its elastic deformation results using the positional

mass-spring system.

We also develop a rotational mass-spring system for the elastic changes of the

orientation of a key cross-section. All rotations in three-dimensional space can be

represented by a rotational axis ω̂ and a rotational angle θ. Figure 5.4 shows an

example of a rotational displacement of a key cross-section and the rotational mass-

spring system. We apply a mass-spring system to the rotational angle θ to generate

its elastic changes while fixing the rotational axis. This rotational mass-spring system

is also represented by an angle in a one-dimensional space and generates deformation

effects such as elastic bending and twisting of a sweep surface. Figure 5.5(a) shows

the initial orientation of a cross-section (in red) and Figures 5.3(b)-(e) show its elastic
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Figure 5.2: A key cross-section connected to its original position.

(a) (b) (c) (d) (e)

Figure 5.3: A sequence of elastic deformations using positional mass-spring system:
(a) the initial position of a key cross-section (in red) and (b)-(e) elastic deformation
results.

bending results using the radial mass-spring system.

Finally, we develop a radial mass-spring system for the elastic changes of the

radii of a key cross-section. Each key cross-section has a prescribed n number of

radial handles and they are circularly positioned on each key cross-section using a

uniform angle 2π/n. Figure 5.6 shows an example of a key cross-section where four

radial handles are connected to the origin of the key cross-section using a radial mass-

spring system. The scalar radius function r(θ, t) of a sweep surface is generated by

interpolating the simulation results of these radial handles. Figure 5.7(a) shows the

initial positions of two radial handles (in green) and Figures 5.7(b)-(e) show its elastic
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ˆ

Figure 5.4: Axis-angle representation of a rotational displacement.

(a) (b) (c) (d) (d)

Figure 5.5: A sequence of elastic deformations using rotational mass-spring system:
(a) the initial orientation of a key cross-section (in red) and (b)-(e) elastic deformation
results.

deformation results using the radial mass-spring systems.

All of our mass-spring systems of a key cross-section are represented by scalars

such as angle and distance, which greatly simplifies a numerical integration process

as described in the following equation:

mi · d2Xi(t)

dt2
+ ci · dXi(t)

dt
= Fi(t),

where mi are the masses of key cross-sections or radial handles, ci are the damping

coefficients of the mass-spring system, and Xi(t) are the simulation parameters such

as angle and distance. The terms Fi(t) are the total sums of spring forces and external

forces. For a numerical integration, we simply employ an explicit Euler method with

a fixed time step.
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Figure 5.6: A key cross-section with four mass-spring systems.

(a) (b) (c) (d) (e)

Figure 5.7: A sequence of elastic deformations using radial mass-spring systems: (a)
the initial positions of two radial handles (in green) and (b)-(e) elastic deformation
results.

Although these mass-spring systems are quite simple and efficient, they have some

limitations. Since each elastic change occurs in a key cross-section and it is also limited

to a one-dimensional space such as angle and distance, it is rather difficult to generate

a plausible shape deformation in a three-dimensional space. These limitations can

easily be resolved by combining the simulation results from a sequence of key cross-

sections and interpolating them simultaneously. In this way, we can generate plausible

complex deformations of an elastic sweep surface that can be simulated in a three-

dimensional space.
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5.3 Response to User Interaction

In this section, we explain how an elastic sweep surface initiates an elastic defor-

mation in response to the user interactions.

5.3.1 Elastic potential energy

The user can change the positions, orientations and the lengths of radial han-

dles of key cross-sections. These operations generate elastic potential energies of the

corresponding mass-spring systems and initiate the elastic deformation of a sweep

surface. Figures 5.3, 5.5, and 5.7 show the results of sequential deformations where

the user changes the position, orientation and the lengths of radial handles of a key

cross-section respectively.

(a) (b) (c) (d) (e)

Figure 5.8: A sequence of elastic deformations using the direct control technique: (a)
the control sweep surface edited directly, (b)-(e): simulation results.

These simulation results are quite simple and limited to one-dimensional spaces.

Thus, it is rather difficult to produce plausible deformation results desired by the

user. The direct control technique introduced in Chapter 4 for a sweep surface can be

applied to generate a compound deformation effect in a considerably more intuitive

way. The user picks a point on a surface and moves it to another position, which
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generates a difference vector in the three-dimensional work space. The difference

vector is then decomposed into rotational components, translational components, and

radial offsets of proper key cross-sections. These components are added to appropriate

key cross-sections until the distance between two positions are reduced within a given

tolerance. These components produce simultaneous changes of the elastic potential

energies in the mass-spring systems and initiate an elastic deformation of the sweep

surface. Figure 5.8(a) shows the surface under a direct control and Figures 5.8(b)-

(e) show the corresponding elastic deformation results in which the elastic potential

energies are considered for rotational and radial mass-spring systems only.

5.3.2 External force

In addition to an elastic potential energy, an external force can be applied to

initiate an elastic deformation of the sweep surface. In this section, we focus on the

external force applied to a point on the sweep surface. Our strategy is to decompose

the external force into a rotational force and a radial one for a proper key cross-section

and then to apply them to each mass-spring system of the key cross-section. A trans-

lational force can be derived in a similar way, however, we do not take account this

force. We replace the translational force with a radial one. Using this approach, we

can generate compound deformation effects and provide an illusion that deformations

are performed in a three-dimensional space.

Figure 5.9 shows an example of the force vector ~fext which is applied to a point

p on the sweep surface. First we derive the rotational axis ω̂ by computing and

normalizing the cross product of ~a and ~fext. The rotational force is then computed
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Figure 5.9: Rotational force.

as follows:

frot = Crot · ‖~fext‖,

where Crot is a scale factor for controlling the rotational force; this is necessary because

the metric of a rotational force is different from that of a radial one. We apply the

rotational axis and the force to the key cross-section Xi. Assuming p will follow Xi

to a large extent, the sweep surface initiates the elastic deformations such as bending

and twisting. The candidates of Xi can be either the closest key cross-section to the

point p or the one determined by the user. When the user specifies the cross-section

Xi, we can control the region where rotational deformation effects should occur, which

provides an intuitive and flexible control to shape deformation.

Now we deal with how to compute the radial force from the external force ~fext.

Figure 5.10(a) shows the force vector ~fext applied to the point p on a sweep surface.

We take the cross-sectional plane T on which the point p lies. The point p̂ is obtained

by projecting ~fext onto the plane T . Figure 5.10(b) shows the cross-sectional plane T
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Figure 5.10: Computing radial force

from the top view. The radial force frad is computed as follow:

frad = Crad · < ~op, ~pp̂ >

‖ ~op‖ ,

where Crad is also a scale factor for controlling the radial force and < ·, · > denotes

the inner product.

5.3.3 Optimal distribution of an external force

The radial force frad should be applied to the virtual mass-spring system (in

red) as shown in Figure 5.10(a), which connects the point p to the origin o of the

cross-sectional plane T . However, we do not have such a mass-spring system since

the cross-section T is not one of our key cross-sections Xi. We may add the cross-

section T temporarily; however, it would make thins more difficult to deal with since

forces can be applied to arbitrary points on the sweep surface. As a practical and

reasonable approach, we distribute the radial force frad to the four nearby handles,

mi−1,j−1,mi−1,j,mi,j−1 and mi,j of the two bounding key cross-sections Xi−1 and Xi.
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First, initial forces for four handles are computed and optimal forces are then applied

to these handles. With these optimal forces, we can imitate the simulation result of

the virtual radial mass-spring system of the cross-section T .

Figure 5.11 shows the corresponding parameters of four bounding radial handles

m∗,∗ and the point p in the (θ, t)-space. For theses handles, their initial forces are

computed as follows:

fradi−1,j−1
= frad · (1− s) · (1− t),

fradi−1,j
= frad · s · (1− t),

fradi,j−1
= frad · (1− s) · t,

fradi,j
= frad · s · t,

s =
(θp − θi−1,j−1)

(θi−1,j − θi−1,j−1)
,

t =
(tp − ti−1,j−1)

(ti,j−1 − ti−1,j−1)
,

where (s, t) represents a normalized coordinate of (θp, tp) in a local domain bounded

by a dashed rectangle as shown in Figure 5.11. Each force is inversely proportional to

the area generated by (θp, tp) and the four corners (θ∗, t∗) of the parameter domain.

By applying the initial forces to four radial handles, the sweep surface initiates a

physical simulation. The red points in Figure 5.12 represent the simulation results

using these initial forces, whereas the green points are simulated by the virtual mass-

spring (in red) of Figure 5.10(a). As shown in Figure 5.12, the simulation results of

the initial forces are quite different from the one by the virtual mass-spring system.

Therefore, we need to determine the optimal forces that generate similar results with

the virtual mass-spring system.
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The optimal forces are computed by minimizing the following functional:

Ψ(λ) = ‖v0 − v(λ · ~f)‖2,

where v0 is the initial velocity of the point p when frad is directly applied to the

virtual mass-spring system and v(·) represents the velocity of the point p when the

force vector ~f = (fradi−1,j
, fradi−1,j

, fradi−1,j
, fradi−1,j

), (scaled by λ), is applied to four

handles. In effect, this is a simple optimization problem in one-dimensional space

and a standard line minimization technique [61] can be employed for computing an

optimal scalar value λ. The optimal force vector ~fopt (scaled by λ) minimizes the

squared difference between two velocities.

t

0 1

1
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),( pp t

Figure 5.11: Force distribution

The black points in Figure 5.12 represent the simulation results when the optimal

forces are applied to four handles. We can confirm that these simulation results are

quite similar to the ones simulated by the virtual mass-spring system.
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Figure 5.12: Force distribution results

During elastic deformations, successive external forces can be applied to the sweep

surface. In this case, the elastic sweep surface should reflect them. The radial mass-

spring systems can easily handle these forces by adding optimal forces to correspond-

ing radial handles. However, a similar composition is impossible for the rotational

mass-spring system. Even if we add additional axes and simulate their effects, it

will be quite difficult to track all external forces. We do not know how many times

the external force would be applied to the sweep surface. To avoid this problem, we

separate the simulation procedure into two steps. The first step deals with elastic

potential energies which are generated by changing the shape of a sweep surface. The

second step deals with external forces applied to the sweep surface. Using this two-

step procedure, we can easily deal with the successive forces applied to the rotational

mass-spring systems. When a new external force is applied to the sweep surface that

is under deformation, the current state of the sweep surface, which is generated by a
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previous external force, is converted to elastic potential energies. By simulating both

the elastic potential energy and the new external force simultaneously, we can obtain

compound deformation results.

5.4 Sweep-based Elastic Deformation

Using the elastic sweep surface introduced in Sections 5.2 and 5.3, the sweep-

based freeform deformation is further extended to the elastic deformation of three-

dimensional object. The basic framework of the sweep-based approach can be sum-

marized as follows:

• Given a three-dimensional object, we construct control sweep surfaces that ap-

proximate the deformable parts of the object (see Figure 5.13(a) and (b)).

• All vertices of the deformable parts are bound to the cross-sections of the control

sweep surfaces using binding parameters (see Figure 5.13(c)).

• As the user controls the underlying control sweep surfaces, the corresponding

deformable parts change their shapes (see Figure 5.13(d)).

Figure 5.13 shows the graphical illustrations of this framework. The main difference

is that we enhance a control sweep surface to an elastic sweep surface and allow the

user to apply external forces so as to control the underlying control sweep surfaces.
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Figure 5.13: Framework of a sweep-based approach: (a) given three-dimensional
object, (b) control sweep surfaces, (c) vertex binding and (d) deformation result.

5.5 Experimental Results

Our elastic deformation technique was implemented using C++ on a P4-3.2GHz

PC with a 2GB main memory and an NVIDIA GeForce FX5700 Ultra 128MB graphic

card. We used the fixed time step (4t = 0.1) for the numerical integration. Our de-

formation technique works in real-time for all test examples presented in this thesis.

Figure 5.14 shows the elastic deformation results of these examples. In Figure 5.14(a),

the elastic deformation results of a bunny model are generated using the direct control

technique. In Figure 5.14(b), the force applied to the bunny model is decomposed into

a rotational force and a radial one, and the subsequent deformation results are gener-

ated by applying only the rotational force. On the other hand, Figure 5.14(c) shows

the elastic deformation results of a dinosaur model where both rotational and radial

forces are applied simultaneously and compound deformation effects are achieved.

As demonstrated in these examples, our technique can generate various deformation

effects of three-dimensional objects by decomposing an external force and applying

them selectively.



Chapter 5: Sweep-based Elastic Deformation 85

Table 5.1: Number of vertex and frame rate (fps.).

Control sweep surface Average frame rate (fps.)
Models # of vert. # of keys # of handles Our method Modal warping

Bunny 19,226 21 8 38.7 -
Dinosaur 28,096 40 8 19.1 11.9

Head 7,769 5 4 77.5 -

Moreover, our technique provides a flexible control mechanism by specifying the

region where elastic bending or twisting effects should occur. Figure 5.14(d) shows

elastic deformation results of a head model. In this example, we enforced the second

key cross-section of the underlying sweep surface to handle the rotational force ob-

tained by the decomposing technique. All bending effects are simulated in the neck

region, whereas a force is applied to the middle position of the model. Figure 5.14(e)

also shows the deformation results of the head model for the same external force.

However, it shows stiffer deformation results at the same simulation steps compared

with the result of Figure 5.14(d) since we assigned different damping constants to the

mass-spring systems.

Table 5.1 lists the number of vertices, other data for the control sweep surfaces

and the frame rate of deformation for each model. For the dinosaur model, we have

compared the performance of our technique with the one of modal warping [15] which

is the state-of-art technique in the simulation using a continuum model and FEM.

Although we used the low-end graphic card, our technique works about 60% faster

than modal warping technique in software implementation.
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5.6 Summary

We have proposed an elastic sweep surface and extended the sweep-based approach

to the elastic deformation of three-dimensional objects. Our technique provided an

excellent control mechanism with real-time performance. Simple mass-spring systems

were devised for the elastic changes of the position, orientation and radii of a key cross-

section, and their simulation results were then interpolated to generate compound

deformations of an elastic sweep surface.

Our technique is quite efficient and stable in the sense that the physical simu-

lations are performed in one-dimensional spaces such as angle and distance. Our

technique provided various deformation effects by decomposing an external force into

a rotational force and a radial one, and applying them selectively. Moreover, it also

provided a flexibility by specifying the region where elastic bending or twisting effects

should occur.
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Figure 5.14: Deformation results of various models.



Chapter 6

Application to a Point Cloud

In this chapter, we introduce a new displaced surface representation using a man-

ifold structure and displacement functions. Using this representation, a detailed ge-

ometric model, given as a point cloud is approximated with high precision. Our

sweep-based approach is then applied to the control mesh of the displaced surface

and smooth deformations are achieved. In Section 6.1, we review some approxima-

tion techniques using a displaced surface and also surface construction techniques

using manifold theory. The manifold theory and structure proposed by Ying and

Zorin [79] are briefly summarized in Section 6.2. In Section 6.3, we construct two

geometric functions on each chart of a domain atlas. One is a local surface patch

which interpolates the vertices of a control mesh, and the other is a scalar displace-

ment function based on multi-level B-splines. Details of the final construction of a

displaced surface are given in Section 6.4. We also propose an algorithm that can

approximate a detailed geometric model in Section 6.5. Finally, experimental results

are presented in Section 6.6.

88
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6.1 Related Work

We begin with a brief review of some representative approximation schemes that

use displaced surfaces and also techniques for surface modeling that are based on the

manifold structure of a model.

6.1.1 Approximation with displaced surfaces

Krishnamurthy and Levoy [49] put forward a technique for approximating an arbi-

trary mesh using B-spline patches and displacement map, using vector displacements

to approximate a target mesh. This technique produces a good surface fit, but there

is a discontinuity problem across patch boundaries.

Lee et al. [52] proposed the displaced subdivision surface. They constructed a

subdivision surface and a map of scalar displacements along its normals. The resulting

detailed surface is represented using a unified subdivision framework. However, this

approach does not provide an analytic representation for the displaced surface; thus

masks must be used to compute differential properties of the surface.

Jeong and Kim [41] proposed a technique for constructing a displaced subdivision

surface from an unorganized point cloud. They used the shrink-wrapping approach

of Kobblet et al. [48] for the construction of a control mesh, but this method works

for objects of genus 0. Recently, Kim and Kim [47] proposed a surface reconstruction

technique that works for objects of arbitrary topology. They used a butterfly subdi-

vision surface and a moving least-squares approach to approximate an unorganized

point cloud.
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6.1.2 Manifold surfaces

A differential manifold is a mathematical structure that defines the topology and

geometry of a general space. In computer graphics, Grim and Hughes [31] used this

concept in constructing surfaces of arbitrary topology. This technique has also been

applied to the parametrization of a surface [29] and to fit a surface to point cloud

data [30]. Cotrina and Pla [19, 20] proposed a Ck surface construction algorithm

which uses a regular star-shaped configuration to represent an irregular vertex and

a polynomial transition function with overlapping charts. The resulting surface is

of B-spline form at a boundary and may be seen as a generalized B-spline surface.

A more generic approach to freeform surface generation was proposed by Cotrina et

al. [21] using manifold theory. They can construct three different types of surfaces,

but their techniques require complicated transition functions.

Recently, a simpler surface construction technique has been proposed by Ying and

Zorin [79]. They constructed charts in the complex plane with transition functions

that have a simple analytic form. Their method provides C∞ continuity and local

support; moreover, the resulting surfaces are visually satisfactory.

Our displaced surface representation is based on the manifold structure of Ying

and Zorin [79]. However, for the sake of efficiency, we employ bi-quadratic local

patches to produce a domain surface that interpolates the mesh vertices. We also use

scalar displacement functions to reconstruct the detailed geometry.
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6.2 Manifold Theory

We will now define a general manifold structure, and summarize the 2-manifold

structure of the control mesh used by Ying and Zorin [79]. A classical manifold is

defined as follows:

Definition 6.1 (Manifold)

k-differentiable manifold of dimension n is a topological space W and a set of pairs

(Ui, ψi)i∈I , where Ui is an open set of Rn and ψi is a k-diffeomorphism of Ui over an

open subset of W, such that

1. W =
⋃

i∈I ψi(Ui).

2. ∀i, j∈I such that ψi(Ui)
⋂

ψj(Uj) =X 6= ∅, the preimages ψ−1
i (X) and ψ−1

j (X)

are open subsets of Rn and the map θi,j = ψ−1
j ◦ ψi is a k-diffeomorphism.

The diffeomorphisms ψi : Ui → W are called parameterizations. The pairs (Ui, ψi)

are the local charts and their collection {(Ui, ψi)}i∈I is called the atlas. And the maps

θi,j : Ui → Uj are called the transition functions.

Ying and Zorin [79] derived the 2-manifold structure of their control mesh. They

defined the chart (Ui, ψi) for each vertex in the complex plane, and derived transition

functions between the overlapping charts as follows:

θi,j(z) = ψ−1
j ◦ ψi = zki/kj ,
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Figure 6.1: The manifold structure of a control mesh.

where ki and kj are the valencies of the vertices vi and vj respectively. If z is one

parameter in a local chart Ui, then z̄ = θi,j(z) is the corresponding parameter of z

in an overlapping chart Uj. Since the transition function is analytic, it represents a

conformal mapping and is easy to compute. Figure 6.1 shows the manifold structure

derived from a given control mesh, including the charts and a transition function

between two overlapping charts. Ying and Zorin [79] also defined the geometric

functions which approximate the subdivision surface of a control mesh, and the scalar

blending functions which apply to each chart. Finally, they were able to construct a

smooth blending surface using this manifold structure and the blending functions.
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6.3 Manifold Structure of a Domain Surface

In this thesis, we employ the same manifold structure as Ying and Zorin [79].

They constructed a local patch on each chart which approximated the subdivision

surface of a control mesh, and these patches were represented by polynomials of

high degree, determined by the valency of each vertex. Instead, we employ local bi-

quadratic patches, which are much simpler. This reduced structure cannot represent

detailed geometries and requires a more refined control mesh, but it suffices for the

construction of a smooth domain surface and has the great advantage of simplifying

the approximation process and reducing the amount of computation. Moreover, our

local patches have a useful interpolation property that relates to the vertex assigned

to the origin of each chart.

In addition to these local patches, we also define scalar displacement functions

on each chart. In the approximation process, these functions are constructed by

interpolating the signed distances from the point cloud to nearby local patches using

a scattered-data interpolation technique [54]. The detailed surface is then constructed

by blending the local patches and the scalar displacement functions in a unified way.

6.3.1 A local patch

Let vi be the vertex of a control mesh (Figure 6.2(a)) and let Ui be the correspond-

ing chart. We construct a local patch Pi(s, t) on each chart Ui using the following

bi-quadratic polynomial representation, which is constructed by approximating the
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positions of the neighboring vertices of vi in the control mesh:

Pi(s, t) =

[
s2 s 1

]



~ci
1,1 ~ci

1,2 ~ci
1,3

~ci
2,1 ~ci

2,2 ~ci
2,3

~ci
3,1 ~ci

3,2 ~ci
3,3







t2

t

1




, (6.1)

where ~ci
j,k =

[
xi

j,k yi
j,k zi

j,k

]T
.

The coefficient vectors ~ci
j,k of Equation (6.1) are determined by minimizing the

following functional:

L(~ci
1,1, · · ·,~ci

3,3) =
2d∑

k=1

‖vk
i − Pi(sk, tk)‖2, (6.2)

subject to Pi(0, 0) = vi, where d is the valency of a vertex vi and vk
i is the kth

neighboring vertex of vi. The constraint represented by this equation forces the

coefficient ~ci
3,3 to be vi in order to interpolate the position of the vertex vi, which is

assigned to the origin of each chart. As a result, the local patch on each chart can

interpolate the position of the center vertex. Figure 6.2(a) shows the vertices of a

control mesh around the vertex vi and Figure 6.2(b) shows the corresponding local

patch. As shown in Figure 6.2(b), the position of the center vertex vi is interpolated

by the local patch.

6.3.2 Displacement function

Once local patches have been constructed for all the charts, scalar displacement

functions di(s, t) are created on each chart Ui by interpolating the signed distances
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(a) (b)

Figure 6.2: Local patch: (a) the vertices of a control mesh and (b) the constructed
local patch.

from each local patch to the point cloud data. For experimental purposes, we generate

random scalar displacements. Since these are not regular data, we used a scattered-

data interpolation technique based on multi-level B-splines [54]. Figure 6.3(a) shows

random displacements on a chart Ui, and Figures 6.3(b) and 6.3(c) show the cor-

responding displacement functions di(s, t) at different levels of detail. Figure 6.3(d)

shows the displaced local patch Si(s, t) generated by applying a displacement function

di(s, t) to a local patch Pi(s, t). Since it is represented in analytic form, differential

properties such as partial derivatives, normal vectors and curvatures can be easily

and exactly computed using chain rule and Leibniz rule. The position of a displaced

point is computed as follows:

Si(s, t) = Pi(s, t) + di(s, t) ·Ni(s, t), (6.3)

where

Ni(s, t) =
∂Pi

∂s
(s, t)× ∂Pi

∂t
(s, t)∥∥∂Pi

∂s
(s, t)× ∂Pi

∂t
(s, t)

∥∥ .
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(a) (b)

(c) (d)

Figure 6.3: Displacement function: (a) randomly generated displacements, (b) dis-
placement function at low level of detail, (c) displacement function at high level of
detail and (d) displaced local patch Si(s, t).
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6.4 Displaced Surface Construction

We have now constructed a local patch and scalar displacement function on each

chart, and each local patch can interpolate the position of a vertex on the control

mesh. We now use the transition functions θi,j(z) to represent the correspondence

of points and displacements to be blended between overlapping local patches. To

achieve a smooth blend, smooth blending functions are necessary on each chart and

they must also be normalized. We use the same blending functions as Ying and

Zorin [79]. Since the blending function has unit weight at its origin and zero weight

at its boundary, the interpolation property of the local patches are preserved in the

final blended domain surface. Figure 6.4(a) shows a control mesh and Figure 6.4(b)

shows a blended domain surface.

The final displaced surface is achieved by applying the scalar displacement func-

tions to the local patches. These functions are smoothly blended together in the same

way as the local patches. For a given parameter value z in a chart Ui, the displaced

surface point Di(z) can be evaluated from Equation (6.4). First we need to find

all the overlapping charts {Uj} in the atlas which contain z, and then compute the

corresponding transition parameters on each chart Uj, using the transition functions

θi,j(z). Then we compute the displaced points Sj(z) from Equation (6.3). Finally,

all the displaced points are blended together smoothly using the weight functions

wj(θi,j(z)) on each chart:

Di(z) =
∑
j∈Jz

wj(θi,j(z)) · Sj((θi,j(z)), (6.4)

where z is the value of a parameter in a local chart Ui, Jz = {j|z ∈ Uj} is an index
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(a) (b)

(c) (d)

Figure 6.4: Displaced surface: (a) control mesh, (b) domain surface, (c) and (d)
displaced surfaces with different resolutions.

set, and wj(·) are the smooth blending functions that form a partition unity.

To achieve representations at different resolutions, we change the level of the scalar

displacement functions in Equation (6.3). Figures 6.4(c) and 6.4(d) show the displaced

surfaces generated by random displacements with different levels of displacement

functions.
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6.5 Approximation to a Point Cloud

Now we present a new algorithm that approximates a detailed geometric model

with our displaced surface. The approximation proceeds in three steps. First we

generate a control mesh and the corresponding domain surface from a point cloud.

Each data point is then projected on to nearby local patches and initial projection

parameters and corresponding displacements are computed. Finally, they are ad-

justed to minimize the approximation errors and optimal displacement functions are

constructed. Our contribution consists of the second and third steps, while the first

step is performed using existing methods.

6.5.1 Control mesh

Many advanced techniques [33, 41, 47, 48, 52] exist for the construction of a

good control mesh and domain surface from a detailed geometric model. We use a

commercial software package [40] which is based on a combination of existing methods.

Figures 6.6(a) and 6.7(a) show typical point cloud data and Figures 6.6(b) and 6.4(a)

show the resulting control meshes.

In our work with scanned human models, we often discover missing areas in the

acquired models. To deal with this problem, we have developed a special user interface

for constructing a control mesh from human body scans. The user picks a few feature

points on the model, and these are then used to segment the body into torso, arms

and legs, and to construct a skeleton structure for subsequent deformation. We then

cut the segmented point cloud using planes orthogonal to the skeleton and project

all the vertices on to nearby cutting planes. By sampling the vertices on each cut
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and connecting those which appear in two consecutive cuts, we can generate a control

mesh. Figures 6.8(a) and 6.8(b) show a scanned human model and the corresponding

control mesh.

6.5.2 Initial displacement

Once the control mesh has been constructed, a smooth domain surface is generated

by blending the local patches. Scalar displacement functions are then constructed on

each chart. To construct the optimal scalar displacement functions, we compute initial

displacements on each chart and adjust them to minimize the approximation errors.

The initial displacements are computed in a different way from previous methods [41,

47, 52], which shoot rays from the domain surface to the detailed geometry. Some of

these techniques need connectivity information for the target model. Others [41, 47]

are based on guessing the local geometry. Our projection method proceeds in the

opposite direction, from the point data to the domain surface, which is considerably

easier to implement and produces a more precise result than shooting methods. The

main computational expense of our approach is the solution of the following system

of non-linear equations, which determine the projection of each point:





F1(s, t) =
〈
pi − Pj(s, t),

∂Pj

∂s
(s, t)

〉
= 0

F2(s, t) =
〈
pi − Pj(s, t),

∂Pj

∂t
(s, t)

〉
= 0,

(6.5)

where pi is a point to be projected on to a local patch Pj(s, t).

Assuming that we are using a quadrilateral control mesh, pi will be projected

on to four local patches Pj, j = 0, 1, 2, 3, as shown in Figure 6.5. The use of a bi-
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(a) (b) (c) (d)

Figure 6.5: Projection on to local patches.

quadratic surface representation for local patches greatly simplifies the solution of

Equation (6.5).

Let p̂i denote the projection of pi on to the closest face. Then we find the vertex v0

of that face which is nearest to the projection point p̂i. The local patch corresponding

to v0 will be denoted as the patch P0(s, t). An initial guess of the parameters of the

projected point, (s0
0, t

0
0), is estimated from the coordinates of p̂i projected on to the

corresponding face of the control mesh. From the initial solution (s0
0, t

0
0), we compute

more precise parameters (ŝ0, t̂0) using the following Newton iteration:




sk+1

tk+1


 =




sk

tk


−




∂F1

∂s
∂F1

∂t

∂F2

∂s
∂F2

∂t




−1




F1(s
k, tk)

F2(s
k, tk)


 .

Once the projection parameter (ŝ0, t̂0) on the first patch has been obtained, the

other three projection parameters (ŝj, t̂j), j = 1, 2, 3, are guessed using the transition

functions θi,j. More precise solutions can be computed using a few additional steps

of the above iteration. For robustness, we ignore any projection parameters that end

up outside their chart.
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The displacements d̂j, j = 0, 1, 2, 3, are then computed as signed distances from

Pj(ŝj, t̂j) to pi. These become the initial scalar displacements that correspond to

the projection parameters (ŝj, t̂j), j = 0, 1, 2, 3, on each chart. Using existing tech-

niques [41, 47, 52], it is difficult to find the projected points since there are no analytic

forms; thus they employed ray-shooting method. On the other hand, our analytic

representation greatly simplifies the projection procedure and produces considerably

more precise results using an optimization technique to be discussed below.

6.5.3 Optimal displacement function

In general, the four projection parameters (ŝj, t̂j), j = 0, 1, 2, 3, on each chart do

not satisfy the transition relations. Each initial scalar displacement only represents

the exact displacement of the point data from one local patch. When the four dis-

placements are blended together, the resulting surface may not interpolate the original

point data exactly. This approximation error is due to a mismatch in the transition

relations among the projection parameters (ŝj, t̂j), j = 0, 1, 2, 3. To minimize the ap-

proximation error, we need to compute the optimal parameters (sj, tj) which satisfy

transition relations and their corresponding displacements dj, j = 0, 1, 2, 3. These op-

timal parameters and displacements are obtained by minimizing the following error

functional:

Ψ(s0, t0, d0, d1, d2, d3) = ‖pi −
3∑

j=0

wj(sj, tj) · (Sj(sj, tj) + Nj(sj, tj) · dj)‖2, (6.6)

where the parameter (s0, t0) is initialized by the first projection parameter (ŝ0, t̂0) and

(sj, tj) = θi,j(s0, t0) are its transition parameters and the displacements dj are initial-

ized by d̂j, j = 0, 1, 2, 3. From the initial projection parameters and displacements,
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we then find the optimal ones which minimize Equation (6.6). This is a general non-

linear optimization problem in 6-dimensional space, which is solved by a direction

set method [61]. Although the optimal parameters may not be the exact projection

parameters to local patches, they minimize the approximation error in a least square

sense.

The optimal parameters and displacements are assigned to each chart, and opti-

mal scalar displacement functions are then constructed by interpolating the assigned

displacements. The assigned parameters are not distributed in a regular fashion; thus

we use a scatter-data interpolation technique [54].

6.6 Experimental Results

We implemented our displaced surface algorithm in C++ on a Pentium-IV(3.2GHz)

desktop PC with a 2GB main memory. Figures 7–9 illustrate the approximation pro-

cess and its results on three different models. The processing time can be divided

into two parts: in the vertex projection stage, all the vertices are projected on to

nearby local patches, which involves the calculation of optimal projection parameters

and displacements, and in the second stage, the optimized displacement functions are

constructed on each chart. Table 6.1 itemizes the processing times for each stage,

together with the number of points in the point cloud data and the control meshes.

To demonstrate the effectiveness of our approach in practical applications, we ap-

plied a sweep-based approach to the approximation of a human model. The vertices

of a control mesh are bound to sweep surfaces which approximate the arms, legs

and torso. These vertices follow the deformations of the sweep surfaces, and domain
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Table 6.1: Approximation results.

Models Dragon Bunny Human Armadillo

Number of data points 108,755 34,834 43,817 159,103
Vertices on control mesh 4,095 540 1,134 720

Time for proj. and opt. (sec) 552.53 221.07 318.72 813.72
Time for disp. func. (sec) 10.86 1.43 1.95 4.21
Approx. err. without opt. 5.06 ∗ 10−3 1.78 ∗ 10−3 6.86 ∗ 10−4 7.84 ∗ 10−3

Approx. err. with opt. 3.41 ∗ 10−4 1.52 ∗ 10−4 1.23 ∗ 10−4 2.78 ∗ 10−4

surfaces deform smoothly while approximating the body shape. Scalar displacement

functions are then employed to produce detailed shapes. Figure 6.9 shows clips from

an animation made using this technique. It shows that our displaced surface repre-

sentation can produce continuous and natural deformations of a human model.

Our technique can also be used to construct multi-resolution representations. Our

scalar displacement functions are in the form of a multi-level B-spline representation,

allowing us to change their level of detail in runtime. Figure 6.10 shows Armadillo

model represented by varying levels of the displacement functions. We also analyzed

the approximation errors for each model (normalized to unit cube size). The approx-

imation errors (average distances) for each model are listed in the last two rows of

Table 6.1.

6.7 Summary

We have introduced a new displaced surface representation based on a manifold

structure. Our representation consists of simple local patches and scalar displacement

functions on each chart of a control mesh. These two geometries are smoothly blended

to represent a detailed surface in a unified way. We have also presented an algorithm



Chapter 6: Application to a Point Cloud 105

(a) (b) (c)

Figure 6.6: Approximation process: (a) point cloud, (b) control mesh and (c) result.

(a) (b) (c)

Figure 6.7: Approximation process: (a) points cloud, (b) result and (c) meshing of
point cloud.
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(a) (b) (c)

Figure 6.8: Approximation process: (a) points cloud, (b) control mesh and (c) result.

Figure 6.9: Sweep-based deformation results.



Chapter 6: Application to a Point Cloud 107

Figure 6.10: Multi-resolution representations.

for approximating a detailed geometric model given as a point cloud. This algorithm

is different from existing techniques in the sense that our approach is based on vertex

projection and the optimization of displacement functions. The vertex projection

technique eliminates the requirement of the connectivity information in the model,

and produces precise approximation results incorporating an optimization procedure.

Using several experimental results, we have also demonstrated the effectiveness of our

approach in various applications such as multi-resolution modeling and sweep-based

shape deformation.



Chapter 7

Conclusions

In this thesis, we have presented a sweep-based approach to modeling and defor-

mation of three-dimensional objects and then applied this approach to three practical

applications; human deformation, freeform deformation and elastic deformation. In

experimental results, we have shown that the sweep-based approach provides an ex-

cellent control mechanism for deforming three-dimensional objects and it can be easily

extended to physically-based deformations.

Once the deformable parts of an object have been approximated with control

sweep surfaces and all vertices of the parts have been bound to the sweep surfaces,

it is relatively easy to change the shape of an object by controlling the underlying

sweep surfaces. In the human deformation, we utilized the skeleton structure of a

model to effectively control the underlying sweep surfaces and then addressed how

to connect arms and legs to shoulders and hip using a shape blending technique.

Some anatomical features such as elbow and knee protrusion, and skin folding were

supported at an interactive speed using a GPU-based collision detection procedure
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and muscle bulge effect was also realized using an additional sweep surface. However,

it was still difficult to apply all these features to a whole human model at an interactive

speed.

We have then extended the sweep-based approach to the freeform deformation of

three-dimensional objects. We enhanced the sweep surface using the kinetic structure

of key cross-sections and proposed various control techniques, which allow the user

to change the shape of an object intuitively and effectively. When an object has

multiple deformable parts, we built a hierarchy of deformations using sweeps and

solved the problem of various interactions among them. The main difficulty in this

technique is the construction of the control sweep surfaces, which requires some user

intervention. This can be ameliorated by incorporating convenient user interfaces or

advanced surface fitting techniques.

We have further extended the sweep-based approach to the elastic deformation of

three-dimensional objects. For this, we enhanced the capability of key cross-sections

by applying mass-spring systems and introduced an elastic sweep surface. The elas-

tic sweep surface was generated by interpolating key cross-sections, while adapting

dynamic changes in their positions, orientations and boundary shapes. Since the

mass-spring systems are simulated in one-dimensional space, they were quite simple,

efficient and stable in numerical integration stage. We have also developed a technique

that decomposes external forces into different components of mass-spring system to

reflect various deformation effects.

Finally, we have applied our sweep-based approach to geometric models repre-

sented as point clouds. To efficiently handle a point cloud, we approximated it using
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a surface displaced from a manifold. An optimization technique was employed to

minimize the approximation errors. Sweep-based approach was then applied to the

control mesh of the point cloud. As the control mesh deforms, the displaced surface

was reconstructed and the corresponding smooth shape deformations were achieved.

In the current implementation, we focused on applying our sweep-based approach

to three-dimensional models represented as polygons or point clouds. In future work,

we will investigate the feasibility of controlling the shape of freeform objects which

have other representations, such as implicit surfaces or procedural models. And we

will extend our freeform deformation technique to support more complex interaction

rules and apply our sweep-based approach to other geometric problems such as shape

morphing and compression. Furthermore, we will accelerate the performance of our

our sweep-based approach using programable graphics hardware.
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